Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 16, Issue 9, pp 818–822 | Cite as

Tibial aperture bone disruption after retrograde versus antegrade tibial tunnel drilling: a cadaveric study

  • Timothy R. McAdamsEmail author
  • Sandip Biswal
  • Kathryn J. Stevens
  • Christopher F. Beaulieu
  • Bert R. Mandelbaum
Knee

Abstract

The purpose of this study is to compare the local microfracture effects of antegrade versus retrograde drilling of the tibial tunnel in ACL reconstruction. Arthroscopic ACL excision was performed on eight matched cadaveric knees. Arthroscopic guided tibial tunnel reaming was performed in either an antegrade (four) or retrograde (four) direction. A 3 × 3 cm section of proximal tibial surrounding the tibial aperture was removed with open dissection, and each section underwent micro-computed tomography analysis. Three musculoskeletal radiologists graded the specimens for bone aperture disruption and discrete fracture lines. Tibial aperture irregularity was seen in all four of the antegrade specimens (mean, Grade 1.5), and in none of the retrograde specimens. Discrete fracture lines were present in all four antegrade specimens (mean 10.13 mm depth; 8.95 mm length). No fracture lines were seen in the retrograde group. Retrograde drilling of the tibial tunnel in ACL reconstruction results in less microfracture trauma to the surrounding aperture bone. The use of retrograde drilling in ACL reconstruction may decrease synovialization of the graft-tissue interface when compared to antegrade drilling.

Keywords

Anterior cruciate ligament ACL reconstruction Tibial tunnel Computed tomography Subchondral fracture 

Notes

Acknowledgments

Research was supported by Arthrex, Naples, FL. The authors acknowledge Pacific Medical Inc., (Tracy, CA), for the donation of cadaveric specimens used in this study and use of the Arthrex (Naples, FL) retrodrill system.

Conflict of interest

The authors report no conflict of interest.

References

  1. 1.
    Aglietti P, Giron F, Buzzi R et al (2004) Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosis and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am 86:2143–2155PubMedGoogle Scholar
  2. 2.
    Barber FA, Spruill B, Sheluga M (2003) The effect of outlet fixation on tunnel widening. Arthrosc 19:485–492Google Scholar
  3. 3.
    Berg EE, Pollard ME, Kang Q (2001) Interarticular bone tunnel healing. Arthrosc 17:189–195Google Scholar
  4. 4.
    Freedman KB, D’Amato MJ, Nedeff DD et al (2003) Arthroscopic anterior cruciate ligament reconstruction: a meta-analysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31:2–11PubMedGoogle Scholar
  5. 5.
    Hoher J, Moller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6:231–240PubMedCrossRefGoogle Scholar
  6. 6.
    Ishibashi Y, Rudy TW, Livesay GA et al (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic system. Arthrosc 13:177–182Google Scholar
  7. 7.
    Lubowitz JH (2006) No tunnel anterior cruciate ligament reconstruction. Arthrosc 22:900e1–900e11Google Scholar
  8. 8.
    Morgan CD, Kalman VR, Grawl DM (1995) Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction. Arthrosc 11:275–288Google Scholar
  9. 9.
    Morgan CD, Stein DA, Leitman EH, et al (2002) Anatomic tibial graft fixation using a retrograde bio-interference screw for endoscopic anterior cruciate ligament reconstruction. Arthrosc 18:38e1–38e8Google Scholar
  10. 10.
    Rodeo SA, Kawamura S, Kim H et al (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790–1800PubMedCrossRefGoogle Scholar
  11. 11.
    Weiler A, Hoffmann RFG, Bail HJ, et al (2002) Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthrosc 18:124–135Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Timothy R. McAdams
    • 1
    Email author
  • Sandip Biswal
    • 2
  • Kathryn J. Stevens
    • 2
  • Christopher F. Beaulieu
    • 2
  • Bert R. Mandelbaum
    • 3
  1. 1.Department of Orthpaedic SurgeryStanford UniversityPalo AltoUSA
  2. 2.Department of RadiologyStanford UniversityStanfordUSA
  3. 3.Santa Monica Orthopaedic GroupSanta MonicaUSA

Personalised recommendations