Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 14, Issue 8, pp 694–706 | Cite as

Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations

  • Peter C. M. Verdonk
  • Koenraad L. Verstraete
  • Karl F. Almqvist
  • Kristof De Cuyper
  • Eric M. Veys
  • Gust Verbruggen
  • René Verdonk


Long-term data on the clinical outcome and the fate of the meniscus allograft after transplantation are scarce. In this study we present the clinical, radiological and MRI outcome of the meniscus graft and the articular cartilage after 42 meniscus allograft transplantations in 41 patients with a minimum follow-up of 10 years. A total of 27 medial and 15 lateral meniscal allografts were transplanted. Eleven of the medial allograft procedures were associated with a high tibial osteotomy. The patients were evaluated clinically at the time of transplantation and at the final follow-up using the modified HSS scoring system. The knee injury and osteoarthritis outcome score (KOOS) was used as an evaluation tool for patient-related outcome at the final follow-up. Joint space width narrowing and Fairbank changes were radiological outcome parameters, which were available for 32 patients. Femoral and tibial cartilage degeneration, graft extrusion and signal intensity were scored on MRI scans obtained in 17 patients approximately 1 year after transplantation and at the final follow-up (>10 years). For statistical analysis the patients were divided into three groups: lateral meniscal allograft (LMT), medial meniscal allograft transplantation with a high tibial osteotomy (MMT+HTO) and without (MMT). The modified HSS score revealed a significant improvement in pain and function at the final follow-up for all groups. Further analysis also revealed that an MMT+HTO procedure resulted in a greater improvement at the final follow-up when compared to MMT. Nonetheless, the KOOS scores obtained at the final follow-up revealed the presence of substantial disability and symptoms, in addition to a reduced quality of life. Radiographical analysis revealed no further joint space narrowing in 13/32 knees (41%). Fairbank changes remained stable in 9/32 knees (28%). MRI analysis showed no progression of cartilage degeneration in 6/17 knees (35%). An increased signal intensity of the allograft was present, as was partial graft extrusion in the majority of patients at the final follow-up. Seven cases had to be converted to a total knee arthroplasty during the follow-up; the overall failure rate was 18%. Long-term results after viable meniscus allograft transplantation are encouraging in terms of pain relief and improvement of function. Despite this significant improvement, substantial disability and symptoms were present in all investigated subgroups. Progression of further cartilage degeneration or joint space narrowing was absent in a considerable number of cases, indicating a potential chondroprotective effect. Level of evidence is therapeutic study, Level IV and retrospective analysis of prospectively collected data.


Meniscus Allograft Transplantation MRI Radiology 



P. V. is a research assistant of the Fund for Scientific Research-Flanders, Belgium (F.W.O.-Vlaanderen).


  1. 1.
    Chatain F, Adeleine P, Chambat P, Neyret P; Societe Francaise d’Arthroscopie (2003) A comparative study of medial versus lateral arthroscopic partial meniscectomy on stable knees: 10-year minimum follow-up. Arthroscopy 19:842–849PubMedCrossRefGoogle Scholar
  2. 2.
    DeHaven KE (1999) Meniscus repair. Am J Sports Med 27:242–250PubMedGoogle Scholar
  3. 3.
    Englund M, Roos EM, Lohmander LS (2003) Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year follow up of meniscectomy with matched controls. Arthritis Rheum 48:2178–2187PubMedCrossRefGoogle Scholar
  4. 4.
    Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg Br 30:664–670Google Scholar
  5. 5.
    Jorgensen U, Sonne-Holm S, Lauridsen F, Rosenklint A (1987) Long-term follow-up of meniscectomy in athletes. A prospective longitudinal study. J Bone Joint Surg Br 69:80–83PubMedGoogle Scholar
  6. 6.
    Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–693PubMedCrossRefGoogle Scholar
  7. 7.
    Alhalki MM, Howell SM, Hull ML (1999) How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. Am J Sports Med 27:320–328PubMedGoogle Scholar
  8. 8.
    Chen MI, Branch TP, Hutton WC (1996) Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12:174–181PubMedCrossRefGoogle Scholar
  9. 9.
    Huang A, Hull ML, Howell SM (2003) The level of compressive load affects conclusions from statistical analyses to determine whether a lateral meniscal autograft restores tibial contact pressure to normal: a study in human cadaveric knees. J Orthop Res 21:459–464PubMedCrossRefGoogle Scholar
  10. 10.
    Paletta GA Jr, Manning T, Snell E, Parker R, Bergfeld J (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25:692–698PubMedCrossRefGoogle Scholar
  11. 11.
    Milachowski KA, Weismeier K, Wirth CJ (1989) Homologous meniscus transplantation. Experimental and clinical results. Int Orthop 13:1–11PubMedCrossRefGoogle Scholar
  12. 12.
    Cameron JC, Saha S (1997) Meniscal allograft transplantation for unicompartmental arthritis of the knee. Clin Orthop 337:164–171PubMedCrossRefGoogle Scholar
  13. 13.
    Graf KW Jr, Sekiya JK, Wojtys EM (2004) Long-term results after combined medial meniscal allograft transplantation and anterior cruciate ligament reconstruction: minimum 8.5-year follow-up study. Arthroscopy 20:129–140PubMedCrossRefGoogle Scholar
  14. 14.
    Noyes FR, Barber-Westin SD (1995) Irradiated meniscus allografts in the human knee. Orthop Trans 19:417Google Scholar
  15. 15.
    Peters G, Wirth CJ (2003) The current status of meniscal allograft transplantation and replacement. Knee 10:19–31PubMedCrossRefGoogle Scholar
  16. 16.
    van Arkel ER, de Boer HH (1995) Human meniscal transplantation. Preliminary results at 2 to 5-year follow-up. J Bone Joint Surg Br 77:589–595PubMedGoogle Scholar
  17. 17.
    Verdonk PCM, Demurie A, Almqvist KF, Veys EM, Verbruggen G, Verdonk R (2005) Viable meniscal allograft transplantation: survivorship analysis and clinical outcome of 100 cases. J Bone Joint Surg Am 87:715–724PubMedCrossRefGoogle Scholar
  18. 18.
    Wirth CJ, Peters G, Milachowski KA, Weismeier KG, Kohn D (2002) Long-term results of meniscal allograft transplantation. Am J Sports Med 30:174–181PubMedGoogle Scholar
  19. 19.
    Aagaard H, Jorgensen U, Bojsen-Moller F (2003) Immediate versus delayed meniscal allograft transplantation in sheep. Clin Orthop 406:218–227PubMedCrossRefGoogle Scholar
  20. 20.
    Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the knee society clinical rating system. Clin Orthop 248:13–14PubMedGoogle Scholar
  21. 21.
    Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and osteoarthritis outcome score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96PubMedGoogle Scholar
  22. 22.
    Altman R, Brandt K, Hochberg M, Moskowitz R, Bellamy N, Bloch DA, Buckwalter J, Dougados M, Ehrlich G, Lequesne M, Lohmander S, Murphy WA Jr, Rosario-Jansen T, Schwartz B, Trippel S (1996) Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a workshop. Osteoarthr Cartil 4:217–243PubMedCrossRefGoogle Scholar
  23. 23.
    Outerbridge RE (1961) The etiology of condromalacia patellae. J Bone Joint Surg Br 43:752–757PubMedGoogle Scholar
  24. 24.
    Verbruggen G, Verdonk R, Veys EM, Van Daele P, De Smet P, Van den Abbeele K, Claus B, Baeten D (1996) Human meniscal proteoglycan metabolism in long-term tissue culture. Knee Surg Sports Traumatol Arthrosc 4:57–63PubMedCrossRefGoogle Scholar
  25. 25.
    Verdonk R (1997) Alternative treatments for meniscal injuries. J Bone Joint Surg Br 79:866–873PubMedCrossRefGoogle Scholar
  26. 26.
    Vorlat P, Verdonk R, Arnauw G (1999) Long-term results of tendon allografts for anterior cruciate ligament replacement in revision surgery and in cases of combined complex injuries. Knee Surg Sports Traumatol Arthrosc 7:318–322PubMedCrossRefGoogle Scholar
  27. 27.
    Shasha N, Krywulak S, Backstein D, Pressman A, Gross AE (2003) Long-term follow-up of fresh tibial osteochondral allografts for failed tibial plateau fractures. J Bone Joint Surg Am 85(Suppl 2):33–39PubMedGoogle Scholar
  28. 28.
    Roos EM, Toksvig-Larsen S (2003) Knee injury and osteoarthritis outcome score (KOOS)—validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes 1:17PubMedCrossRefGoogle Scholar
  29. 29.
    Roos EM (2001) Outcome after anterior cruciate ligament reconstruction—a comparison of patients’ and surgeons’ assessments. Scand J Med Sci Sports 11:287–291PubMedCrossRefGoogle Scholar
  30. 30.
    Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234PubMedCrossRefGoogle Scholar
  31. 31.
    Verstraete KL, Verdonk R, Lootens T, Verstraete P, De Rooy J, Kunnen M (1997) Current status and imaging of allograft meniscal transplantation. Eur J Radiol 26:16–22PubMedCrossRefGoogle Scholar
  32. 32.
    Verstraete KL, Almqvist F, Verdonk P, Vanderschueren G, Huysse W, Verdonk R, Verbruggen G (2004) Magnetic resonance imaging of cartilage and cartilage repair. Clin Radiol 59:674–689PubMedCrossRefGoogle Scholar
  33. 33.
    Yulish BS, Montanez J, Goodfellow DB, Bryan PJ, Mulopulos GP, Modic MT (1987) Chondromalacia patellae: assessment with MR imaging. Radiology 164:763–766PubMedGoogle Scholar
  34. 34.
    Thornton DD, Rubin DA (2000) Magnetic resonance imaging of the knee menisci. Semin Roentgenol 35:217–230PubMedCrossRefGoogle Scholar
  35. 35.
    Breitenseher MJ, Trattnig S, Dobrocky I, Kukla C, Nehrer S, Steiner E, Imhof H (1997) MR imaging of meniscal subluxation in the knee. Acta Radiol 38:876–879PubMedCrossRefGoogle Scholar
  36. 36.
    Cole BJ, Carter TR, Rodeo SA (2003) Allograft meniscal transplantation: background, techniques, and results. Instr Course Lect 52:383–396PubMedGoogle Scholar
  37. 37.
    Rath E, Richmond JC, Yassir W, Albright JD, Gundogan F (2001) Meniscal allograft transplantation. Two- to eight-year results. Am J Sports Med 29:410–414PubMedGoogle Scholar
  38. 38.
    van Arkel ER, de Boer HH (2002) Survival analysis of human meniscal transplantations. J Bone Joint Surg Br 84:227–231PubMedCrossRefGoogle Scholar
  39. 39.
    de Boer HH, Koudstaal J (1994) Failed meniscus transplantation. A report of three cases. Clin Orthop 306:155–162PubMedGoogle Scholar
  40. 40.
    Cheung DT, Perelman N, Tong D, Nimni ME (1990) The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers. J Biomed Mater Res 24:581–589PubMedCrossRefGoogle Scholar
  41. 41.
    Deyne P, Haut RC (1991) Some effects of gamma irradiation on patellar tendon allografts. Connect Tissue Res 27:51–62PubMedCrossRefGoogle Scholar
  42. 42.
    Fabbriciani C, Lucania L, Milano G, Schiavone Panni A, Evangelisti M (1997) Meniscal allografts: cryopreservation vs deep-frozen technique. An experimental study in goats. Knee Surg Sports Traumatol Arthrosc 5:124–134PubMedCrossRefGoogle Scholar
  43. 43.
    Belkoff SM, Haut RC (1992) Microstructurally based model analysis of gamma-irradiated tendon allografts. J Orthop Res 10:461–464PubMedCrossRefGoogle Scholar
  44. 44.
    Jackson DW, Whelan J, Simon TM (1993) Cell survival after transplantation of fresh meniscal allografts. DNA probe analysis in a goat model. Am J Sports Med 21:540–550PubMedCrossRefGoogle Scholar
  45. 45.
    Verdonk P, Almqvist KF, Lootens L, Van Hoofstat D, Van Den Eeckhout E, Verbruggen G, Verdonk R (2002) DNA fingerprinting of fresh viable meniscal allografts transplantated in the human knee. Osteoarthr Cartil 10(Suppl A):S43, P71Google Scholar
  46. 46.
    Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF (2000) Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg Am 82:1071–1082PubMedGoogle Scholar
  47. 47.
    Costa CR, Morrison WB, Carrino JA (2004) Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? AJR Am J Roentgenol 183:17–23Google Scholar
  48. 48.
    Gale DR, Chaisson CE, Totterman SM, Schwartz RK, Gale ME, Felson D (1999) Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthr Cartil 7:526–532PubMedCrossRefGoogle Scholar
  49. 49.
    van Arkel ER, Goei R, de Ploeg I, de Boer HH (2000) Meniscal allografts: evaluation with magnetic resonance imaging and correlation with arthroscopy. Arthroscopy 16:517–521PubMedGoogle Scholar
  50. 50.
    Potter HG, Rodeo SA, Wickiewicz TL, Warren RF (1996) MR imaging of meniscal allografts: correlation with clinical and arthroscopic outcomes. Radiology 198:509–514PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Peter C. M. Verdonk
    • 1
  • Koenraad L. Verstraete
    • 2
  • Karl F. Almqvist
    • 1
  • Kristof De Cuyper
    • 2
  • Eric M. Veys
    • 3
  • Gust Verbruggen
    • 3
  • René Verdonk
    • 1
  1. 1.Department of Orthopaedic SurgeryGhent University HospitalGentBelgium
  2. 2.Department of RadiologyGhent University HospitalGentBelgium
  3. 3.Department of RheumatologyGhent University HospitalGentBelgium

Personalised recommendations