Advertisement

Toward automatic verification of quantum programs

  • Mingsheng Ying
Original Article

Abstract

This paper summarises the results obtained by the author and his collaborators in a program logic approach to the verification of quantum programs, including quantum Hoare logic, invariant generation and termination analysis for quantum programs. It also introduces the notion of proof outline and several auxiliary rules for more conveniently reasoning about quantum programs. Some problems for future research are proposed at the end of the paper.

Keywords

Quantum programming Hoare logic Proof outline Auxiliary rules Invariant generation Termination analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author likes to thank Professors Martin Fränzle, DeepakKapur and NaijunZhan for invitingme to give a talk at SETTA’2016. This work was partly supported by the Australian Research Council (Grant No: DP160101652) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences.

References

  1. AG05.
    Altenkirch T, Grattage J (2005) A functional quantum programming language. In: Proceedings of the 20th IEEE symposium on logic in computer science (LICS), pp 249–258Google Scholar
  2. ABNVW01.
    Ambainis A, Bach E, Nayak A, Vishwanath A, Watrous J (2001) One-dimensional quantum walks. In: Proceedings of the 33rd ACM symposium on theory of computing (STOC), pp 37–49Google Scholar
  3. ABO09.
    Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of sequential and concurrent programs. Springer, London (2009)CrossRefzbMATHGoogle Scholar
  4. AGN14.
    Ardeshir-Larijani E, Gay SJ, Nagarajan R (2014) Verification of concurrent quantum protocols by equivalence checking. In: Proceedings of the 20th international conference on tools and algorithms for the construction and analysis of systems (TACAS), pp 500–514Google Scholar
  5. BS06.
    Baltag, A., Smets, S.: LQP: the dynamic logic of quantum information. Math Struct Comput Sci 16, 491–525 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. BFG14.
    Barthe G, Fournet C, Grégoire B, Strub P-Y, Swamy N, Zanella Béguelin S (2014) Probabilistic relational verification for cryptographic implementations. In: Proceedings of the 41st annual ACM symposium on principles of programming languages (POPL), pp 193–206Google Scholar
  7. BKO13.
    Barthe G, Köpf B, Olmedo F, Zanella Béguelin Z (2013) Probabilistic relational reasoning for differential privacy. In: ACM transactions on programming languages and systems, vol 35, No. 9Google Scholar
  8. BJ04.
    Brunet, O., Jorrand, P.: Dynamic quantum logic for quantum programs. Int J Quantum Inf 2, 45–54 (2004)CrossRefzbMATHGoogle Scholar
  9. CMS06.
    Chadha, R., Mateus, P., Sernadas, A.: Reasoning about imperative quantum programs. Electron Notes Theor Comput Sci 158, 19–39 (2006)CrossRefzbMATHGoogle Scholar
  10. CS13.
    Chakarov A, Sankaranarayanan S (2013) Probabilistic program analysis with martingales. In: Proceedings of the 25th international conference on computer aided verification (CAV). Springer LNCS 8044, pp 511–526Google Scholar
  11. CFNH16.
    Chatterjee K, Fu HF, Novotný P, Hasheminezhad R (2016) Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs. In: Proceedings of the 43rd annual ACM symposium on principles of programming languages (POPL), pp 327–342Google Scholar
  12. CB97.
    Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys Rev A 56, 1201–1204 (1997)CrossRefGoogle Scholar
  13. CSS03.
    Colón MA, Sankaranarayanan S, Sipma HB (2003) Linear invariant generation using non-linear constraint solving. In: Proceedings of the 15th international conference on computer aided verification (CAV). Springer LNCS, pp 420–433Google Scholar
  14. DJR15.
    Dale, H., Jennings, D., Rudolph, T.: Provable quantum advantage in randomness processing. Nat Commun 6, 8203 (2015)CrossRefGoogle Scholar
  15. DP06.
    D'Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math Struct Comput Sci 16, 429–451 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. FDJY07.
    Feng, Y., Duan, R.Y., Ji, Z.F., Ying, M.S.: Proof rules for the correctness of quantum programs. Theor Comput Sci 386, 151–166 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. FHTZ15.
    Feng Y, Hahn EM, Turrini A, Zhang LJ (2015) QPMC: a model checker for quantum programs and protocols. In: Proceedings of the 20th international symposium on formal methods (FM). Springer LNCS 9109, pp 265–272Google Scholar
  18. FY15.
    Feng Y, Ying MS (2015) Toward automatic verification of quantum cryptographic protocols. In: Proceedings of the 26th international conference on concurrency theory (CONCUR), pp 441–455Google Scholar
  19. FYY13.
    Feng, Y., Yu, N.K., Ying, M.S.: Model checking quantum Markov chains. J Comput Syst Sci 79, 1181–1198 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. FH15.
    Fioriti LMF, Hermanns H (2015) Probabilistic termination: soundness, completeness, and compositionality. In: Proceedings of the 42nd annual ACM symposium on principles of programming languages (POPL), pp 489–501Google Scholar
  21. GPN08.
    Gay SJ, Papanikolaou N, Nagarajan R (2008) QMC: a model checker for quantum systems. In: Proceedings of the 20th international conference on computer aided verification (CAV). Springer LNCS 5123, pp 543–547Google Scholar
  22. Gle57.
    Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J Math Mech 6, 885–893 (1957)MathSciNetzbMATHGoogle Scholar
  23. Gor75.
    Gorelick GA (1975) A complete axiomatic system for proving assertions about recursive and non-recursive programs. Technical Report, Department of Computer Science, University of TorontoGoogle Scholar
  24. GLR13.
    Green A, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) Quipper: a scalable quantum programming language. In: Proceedings of the 34th ACM conference on programming language design and implementation (PLDI), pp 333–342Google Scholar
  25. Gro97.
    Grover LK (1997) Quantum telecomputation. arXiv:quant-ph/9704012
  26. Har79.
    Harel D (1979) First-order dynamic logic, LNCS 68. SpringerGoogle Scholar
  27. KV02.
    Den Hartog, J., de Vink, E.P.: Verifying probabilistic programs using a Hoare like logic. Int J Found Comput Sci 13, 315–340 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Kle99.
    Leymann, T.: Hoare logic and auxiliary variables. Formal Asp Comput 11, 541–566 (1999)CrossRefzbMATHGoogle Scholar
  29. KMMM10.
    Katoen J-P, McIver A, Meinicke L, Morgan CC (2010) Linear-invariant generation for probabilistic programs—automated support for proof-based methods. In: Proceedings 17th international symposium on static analysis (SAS). Springer LNCS 6337, pp 390–406Google Scholar
  30. KKK16.
    Kubota, T., Kakutani, Y., Kato, G., Kawano, Y., Sakurada, H.: Semi-automated verification of security proofs of quantum cryptographic protocols. J Symb Comput 73, 192–220 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. JPK15.
    JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: ScaffCC: scalable compilation and analysis of quantum programs. Parallel Comput 45, 2–17 (2015)CrossRefGoogle Scholar
  32. Ka09.
    Kakutani Y (2009) A logic for formal verification of quantum programs. In: Proceedings of the 13th Asian computing science conference (ASIAN 2009). Springer LNCS 5913, pp 79–93Google Scholar
  33. LY18.
    Li YJ, Ying MS (2018) Algorithmic analysis of termination problems for quantum programs. In: Proceedings of the 45th annual ACM symposium on principles of programming languages (POPL), pp 35.1–35.29Google Scholar
  34. LYY14.
    Li, Y.J., Yu, N.K., Ying, M.S.: Termination of nondeterministic quantum programs. Acta Inf 51, 1–24 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. LLW16.
    Liu T, Li YJ, Wang SL, et al A theorem prover for quantum Hoare logic and its applications. arXiv:1601.03835
  36. MS06.
    Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum propositional logic. Inf Comput 204, 771–794 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. MMN08.
    van Meter R, Munro WJ, Nemoto K, Itoh KM (2008) Arithmetic on a distributed-memory quantum multicomputer. ACM J Emerg Technol Comput Syst 3, Art. No. 17Google Scholar
  38. MM05.
    McIver, A., Morgan, C.: Abstraction, refinement and proof for probabilistic systems. Springer, Berlin (2005)zbMATHGoogle Scholar
  39. NC00.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  40. PRZ17.
    Paykin J, Rand R, Zdancewic S (2017) QWIRE: a core language for quantum circuits. In: Proceedings of the 44th annual ACM symposium on principles of programming languages (POPL), pp 846–858Google Scholar
  41. Rand17.
    Rand R Verification logics for quantum programs. http://www.cis.upenn.edu/~rrand/wpe.pdf
  42. SSM04.
    Sankaranarayanan S, Sipma HB, Manna Z (2004) Non-linear loop invariant generation using Gröbner bases. In: Proceedings of the 31st ACM symposium on principles of programming languages (POPL), pp 318–329Google Scholar
  43. Sel04.
    Selinger, P.: Towards a quantum programming language. Math Struct Comput Sci 14, 527–586 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  44. SMB06.
    Serafini A, Mancinians S, Bose S (2006) Distributed quantum computation via optical fibers. Phys Rev Lett 96, Art. No. 010503Google Scholar
  45. SGT18.
    Svore K, Geller A, Troyer M, Azariah J, Granade C, Heim B, Kliuchnikov V, Mykhailova M, Paz A, Roetteler M (2018) Q#: enabling scalable quantum computing and development with a high-level DSL. In: Proceedings of the real world domain specific languages workshop 2018, Art. no. 8Google Scholar
  46. TKM05.
    Tani S, Kobayashi H, Matsumoto K (2012) Exact quantum algorithms for the leader election problem. ACM Trans Comput Theory 4, Art. No. 1Google Scholar
  47. TOVPV11.
    Temme, K., Osborne, T.J., Vollbrecht, K.G., Poulin, D., Verstraete, F.: Quantum metropolis sampling. Nature 471, 87–90 (2011)CrossRefGoogle Scholar
  48. Unruh18.
    Unruh D Quantum relational Hoare logic. https://arxiv.org/pdf/1802.03188.pdf
  49. WS14.
    Wecker D, Svore KM (2014) LIQUi|>: a software design architecture and domain-specific language for quantum computing. arXiv:1402.4467
  50. Yin11.
    Ying MS (2011) Floyd-Hoare logic for quantum programs. ACM Trans Program Lang Syst 39, Art. no. 19Google Scholar
  51. Yin16.
    Ying MS (2016) Foundations of quantum programs. Morgan-KaufmannGoogle Scholar
  52. Yin16a.
    Ying MS (2016) Toward automatic verification of quantum programs (extended abstract). In: Proceedings of the 2nd international symposium on dependable software engineering: theories, tools, and applications (SETTA)Google Scholar
  53. YCFD07.
    Ying, M.S., Chen, J.X., Feng, Y., Duan, R.Y.: Commutativity of quantum weakest preconditions. Inf Process Lett 104, 152–158 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  54. YF10.
    Ying, M.S., Feng, Y.: Quantum loop programs. Acta Inf 47, 221–250 (2010)Google Scholar
  55. YF11.
    Ying, M.S., Feng, Y.: A flow-chart language for quantum programming. IEEE Trans Softw Eng 37, 466–485 (2011)CrossRefGoogle Scholar
  56. YLYF14.
    Ying MS, Li YJ, Yu NK, Feng Y (2014) Model-checking linear-time properties of quantum systems. ACM Trans Comput Logic 15, Art. no. 22Google Scholar
  57. YYW17.
    Ying MS, Ying SG, Wu XD (2017) Invariants of quantum programs: characterisations and generation. In: Proceedings of the 44th annual ACM symposium on principles of programming languages (POPL), pp 818–832Google Scholar
  58. YYFD13.
    Ying, M.S., Yu, N.K., Feng, Y., Duan, R.Y.: Verification of quantum programs. Sci Comput Program 78, 1679–1700 (2013)CrossRefGoogle Scholar
  59. YFYY13.
    Ying SG, Feng Y, Yu NK, Ying MS (2013) Reachability analysis of quantum Markov chains. In: Proceedings of the 24th Int Conf Concurr Theory (CONCUR), pp 334–348Google Scholar
  60. YY12.
    Yu NK, Ying MS (2012) Reachability and termination analysis of concurrent quantum programs. In: Proceedings of the 23th international conference on concurrency theory (CONCUR), pp 69–83Google Scholar

Copyright information

© British Computer Society 2018

Authors and Affiliations

  1. 1.Centre for Quantum Software and InformationUniversity of Technology SydneySydneyAustralia
  2. 2.State Key Laboratory of Computer ScienceInstitute of Software, Chinese Academy of SciencesBeijingChina
  3. 3.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations