Formal Aspects of Computing

, Volume 29, Issue 4, pp 651–703 | Cite as

Fault trees on a diet: automated reduction by graph rewriting

  • Sebastian JungesEmail author
  • Dennis Guck
  • Joost-Pieter Katoen
  • Arend Rensink
  • Mariëlle Stoelinga
Original Article


Fault trees are a popular industrial technique for reliability modelling and analysis. Their extension with common reliability patterns, such as spare management, functional dependencies, and sequencing—known as dynamic fault trees (DFTs)—has an adverse effect on scalability, prohibiting the analysis of complex, industrial cases. This paper presents a novel, fully automated reduction technique for DFTs. The key idea is to interpret DFTs as directed graphs and exploit graph rewriting to simplify them. We present a collection of rewrite rules, address their correctness, and give a simple heuristic to determine the order of rewriting. Experiments on a large set of benchmarks show substantial DFT simplifications, yielding state space reductions and timing gains of up to two orders of magnitude.


Fault tree analysis Dynamic fault trees Reliability Graph rewriting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABvdB+13.
    Arnold F, Belinfante A, van der Berg F, Guck D, Stoelinga MIA (2013) DFTCalc: a tool for efficient fault tree analysis. In: Proc of SAFECOMP, LNCS. Springer, Berlin, pp 293–301.Google Scholar
  2. BCK+11.
    Bozzano M, Cimatti A, Katoen J-P, Nguyen VY, Noll T, Roveri M (2011) Safety, dependability and performance analysis of extended AADL models. Comput J 54: 754–775CrossRefGoogle Scholar
  3. BCS10.
    Boudali H, Crouzen P, Stoelinga MIA (2010) A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans Dependable Secur Comput 7(2): 128–143CrossRefGoogle Scholar
  4. BD05.
    Boudali H, Dugan JB (2005) A discrete-time Bayesian network reliability modeling and analysis framework. Reliab Eng Syst Safety 87(3): 337–349CrossRefGoogle Scholar
  5. BD06.
    Boudali H, Dugan JB (2006) A continuous-time Bayesian network reliability modeling and analysis framework. IEEE Trans Reliab 55(1): 86–97CrossRefGoogle Scholar
  6. BFGP03.
    Bobbio A, Franceschinis G, Gaeta R, Portinale L (2003) Parametric fault tree for the dependability analysis of redundant systems and its high-level Petri net semantics. IEEE Trans Softw Eng 29(3): 270–287CrossRefGoogle Scholar
  7. BHHK03.
    Baier C, Haverkort BR, Hermanns H, Katoen J-P (2003) Model-checking algorithms for continuous-time Markov chains. IEEE Trans Softw Eng 29(6): 524–541CrossRefzbMATHGoogle Scholar
  8. BPMC01.
    Bobbio A, Portinale L, Minichino M, Ciancamerla E (2001) Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliab Eng Syst Safety 71(3): 249–260CrossRefGoogle Scholar
  9. Buc00.
    Buchacker K (2000) Modeling with extended fault trees. In: Proc of HASE, pp 238–246Google Scholar
  10. CCD+11.
    Chiacchio F, Compagno L, D’Urso D, Manno G, Trapani N (2011) Dynamic fault trees resolution: a conscious trade-off between analytical and simulative approaches. Reliab Eng Syst Safety 96(11): 1515–1526CrossRefGoogle Scholar
  11. CCR08.
    Contini S, Cojazzi GGM, Renda G (2008) On the use of non-coherent fault trees in safety and security studies. In: Proc European safety and reliability conf (ESREL), pp 1886–1895Google Scholar
  12. CHZ08.
    Crouzen P, Hermanns H, Zhang L (2008) On the minimisation of acyclic models. In: CONCUR, vol 5201 of LNCS. Springer, Berlin, pp 295–309Google Scholar
  13. CSD00.
    Coppit D, Sullivan KJ, Dugan JB (2000) Formal semantics of models for computational engineering: a case study on dynamic fault trees. In: Proc of ISSRE, pp 270–282Google Scholar
  14. DBB92.
    Dugan JB, Bavuso SJ, Boyd MA (1992) Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans Reliab 41(3): 363–377CrossRefzbMATHGoogle Scholar
  15. DJ91.
    Dershowitz N, Jouannaud J-P (1991) Rewrite systems. In: van Leeuwen J (ed) Handbook of theoretical computer science. MIT Press, Cambridge, pp 243–320Google Scholar
  16. DVG97.
    Dugan JB, Venkataraman B, Gulati R (1997) DIFtree: a software package for the analysis of dynamic fault tree models. In: Proc of RAMS, IEEE, pp 64–70Google Scholar
  17. EEPT06.
    Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of algebraic graph transformation. Monographs in Th. Comp. Science. Springer, BerlinGoogle Scholar
  18. Ehr79.
    Ehrig H (1979) Introduction to the algebraic theory of graph grammars (a survey). In: Ng EW, Ehrig H, Rozenberg G (eds) Graph-grammars and their application to computer science and biology, vol 73 of LNCS. Springer, Berlin, pp 1–69Google Scholar
  19. EPS73.
    Ehrig H, Pfender M, Schneider HJ (1973) Graph-grammars: an algebraic approach. In: 14th annual symposium on switching and automata theory, IEEE Computer Society, pp 167–180Google Scholar
  20. GdMR+12.
    Ghamarian AH, de Mol M, Rensink A, Zambon E, Zimakova M (2012) Modelling and analysis using GROOVE. STTT 14(1): 15–40CrossRefGoogle Scholar
  21. GHH+14.
    Guck D, Hatefi H, Hermanns H, Katoen J-P, Timmer M (2014) Analysis of timed and long-run objectives for Markov automata. Logical Methods Comput Sci 10(3:17):1–29 (2014)Google Scholar
  22. GKS+14.
    Guck D, Katoen J-P, Stoelinga MIA, Luiten T, Romijn JMT. (2014) Smart railroad maintenance engineering with stochastic model checking. In: Proc of RAILWAYS. Saxe-Coburg PublicationsGoogle Scholar
  23. GLMS13.
    Garavel H, Lang F, Mateescu R, Serwe W (2013) CADP 2011: a toolbox for the construction and analysis of distributed processes. STTT 15(2): 89–107CrossRefzbMATHGoogle Scholar
  24. Hec06.
    Heckel R (2006) Graph transformation in a nutshell. Electr Notes Theor Comput Sci 148(1): 187–198MathSciNetCrossRefGoogle Scholar
  25. Her02.
    Hermanns H (2002) Interactive Markov chains: the quest for quantified quality, vol 2428 of LNCS. Springer, BerlinGoogle Scholar
  26. HGH11.
    Han W, Guo W, Hou Z (2011) Research on the method of dynamic fault tree analysis. In: Proc of ICRMS, pp 950–953Google Scholar
  27. IEC07.
    IEC 61025 International Standard:FaultTreeAnalysis. 2nd edn, 2006-12,Reference number IEC61025:2006(E). International Electrotechnical Commission, Geneva, SwitzerlandGoogle Scholar
  28. JGK+15.
    Junges S, Guck D, Katoen J-P, Rensink A, Stoelinga M (2015) Fault trees on a diet—automated reduction by graph rewriting. In: Proc of SETTA, vol 9409 of LNCS. Springer, Berlin, pp 3–18Google Scholar
  29. JGKS16.
    Junges S, Guck D, Katoen J-P, Stoelinga M (2016) Uncovering dynamic fault trees. In: Proc of DSN, IEEEGoogle Scholar
  30. Jun15.
    Junges S (2015) Simplifying dynamic fault trees by graph rewriting. Master Thesis, RWTH Aachen University.Google Scholar
  31. Kai05.
    Kaiser B (2005) Extending the expressive power of fault trees. In: Proc of RAMS, IEEE, January, pp 468–474Google Scholar
  32. KZH+11.
    Katoen J-P, Zapreev IS, Hahn EM, Hermanns H, Jansen DN (2011) The ins and outs of the probabilistic model checker MRMC. Perform Eval 68(2): 90–104CrossRefGoogle Scholar
  33. LXL+10.
    Liu D, Xiong L, Li Z, Wang P, Zhang H (2010) The simplification of cut sequence set analysis for dynamic systems. In: Proc of ICCAE, vol 3, pp 140–144Google Scholar
  34. MPBCR06.
    Montani S, Portinale L, Bobbio A, Codetta-Raiteri, D (2006) Automatically translating dynamic fault trees into dynamic Bayesian networks by means of a software tool. In: Proc of ARES, pp 6Google Scholar
  35. MR07.
    Merle G, Roussel J-M (2007) Algebraic modelling of fault trees with priority AND gates. In: Proc of DCDS, pp 175–180Google Scholar
  36. MRL10.
    Merle G, Roussel J-M, Lesage J-J (2010) Improving the efficiency of dynamic fault tree analysis by considering gate FDEP as static. In: Proc European safety and reliability conf. (ESREL), pp 845–851Google Scholar
  37. MRLB10.
    Merle G, Roussel J-M, Lesage J-J, Bobbio A (2010) Probabilistic algebraic analysis of fault trees with priority dynamic gates and repeated events. IEEE Trans Reliab 59(1): 250–261CrossRefGoogle Scholar
  38. MT95.
    Malhotra M, Trivedi KS (1995) Dependability modeling using Petri-nets. IEEE Trans Reliab 44(3): 428–440CrossRefGoogle Scholar
  39. Neu94.
    Neuts MF (1994) Matrix-geometric solutions in stochastic models—an algorithmic approach. Dover Publications, MineolaGoogle Scholar
  40. PD96.
    Pullum LL, Dugan JB (1996) Fault tree models for the analysis of complex computer-based systems. In: Proc of RAMS, IEEE, pp 200–207Google Scholar
  41. PH08.
    Pulungan R, Hermanns H (2008) Effective minimization of acyclic phase-type representations. In: ASMTA, vol 5055 of LNCS. Springer, Berlin, pp 128–143Google Scholar
  42. Rai05.
    Raiteri DC (2005) The conversion of dynamic fault trees to stochastic Petri nets, as a case of graph transformation. ENTCS 127(2): 45–60zbMATHGoogle Scholar
  43. RGD10.
    Rongxing D, Guochun W, Decun D (2010) A new assessment method for system reliability based on dynamic fault tree. In: Proc of ICICTA, IEEE, pp 219–222Google Scholar
  44. RS15.
    Ruijters E, Stoelinga MIA (2015) Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput Sci Rev 15(16): 29–62MathSciNetCrossRefzbMATHGoogle Scholar
  45. Sch99.
    Schneier B (1999) Attack trees: modeling security threats. Dr. Dobb’s J 24(12):21–29Google Scholar
  46. SDC99.
    Sullivan KJ, Dugan JB, Coppit D (1999) The Galileo fault tree analysis tool. In: Proc of Int Symp on fault-tolerant computing, pp 232–235Google Scholar
  47. SVD+02.
    Stamatelatos M, Vesely W, Dugan JB, Fragola J, Minarick J, Railsback J (2002) Fault tree handbook with aerospace applications. NASA HeadquartersGoogle Scholar
  48. Yev11.
    Yevkin O 2011 An improved modular approach for dynamic fault tree analysis. In: Proc of RAMS, pp 1–5Google Scholar

Copyright information

© British Computer Society 2017

Authors and Affiliations

  1. 1.Software Modeling and VerificationRWTH Aachen UniversityAachenGermany
  2. 2.Formal Methods and ToolsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations