Advertisement

Formal Aspects of Computing

, Volume 27, Issue 5–6, pp 951–973 | Cite as

A reduced maximality labeled transition system generation for recursive Petri nets

  • Messaouda BounebEmail author
  • Djamel Eddine Saidouni
  • Jean Michel Ilie
Original Article

Abstract

In Saidouni et al. (Maximality semantic for recursive Petri net. Europeen conference on modelling and simulation (ECMS’13) pp 544–550, 2013) a maximality operational semantics has been defined for the recursive Petri net model. This operational semantics generates a true concurrency structure named maximality-based labeled transition systems (MLTS). This paper proposes an approach that generates an on-the-fly reduced MLTS modulo a maximality bisimulation relation. The interest of the approach is shown using an example concerning the woodshop cutting system.

Keywords

Maximality labeled transition systems Maximality bisimulation Recursive Petri nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ach91.
    Aceto L, Hennessy M (1991) Adding action refinement to finite process algebra. In: Albert JL, Monien B, Artalejo MR (eds) ICALP91, LNCS, vol 510. Springer, pp 506–519Google Scholar
  2. Agm93.
    Andrews D, Groote J, Middelburg C (eds) (1993) Workshop on Semantics of Specification Languages (SoSL93), Workshops in Computing, Springer-Verlag, Utrecht, pp 289-303Google Scholar
  3. Arn92.
    Arnold A (1992) Systme de transition finis et smantique des processus communicants. Masson, ParisGoogle Scholar
  4. Bes13.
    Benamira A, Saidouni DE (2013) Maximality-based labeled transition systems normal form, modeling approaches and algorithms for advanced computer applications, studies in computational intelligence. 488:337–346Google Scholar
  5. Bdk91.
    Best E, Devillers R, Kiehn A, Pomello L (1991) Concurrent bisimulations in Petri nets. Acta Inf 28: 231–264zbMATHMathSciNetCrossRefGoogle Scholar
  6. Boc88.
    Boudol G, Castellani I (1988) Concurrency and atomicity. TCS 59: 1–60MathSciNetCrossRefGoogle Scholar
  7. Ces86.
    Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification of finite state concurrent systems using temporal logic specifications. ACM Trans Program Lang Syst 8(2): 244–263zbMATHCrossRefGoogle Scholar
  8. Clh93.
    Cleveland R, Hennessy M (1993) Testing equivalence as a bisimulation equivalence. Form Asp Comput 5: 1–20CrossRefGoogle Scholar
  9. Cos94.
    Courtiat JP, Sadouni DE (1994) Action refinement in LOTOS. In: Danthine A, Leduc G, Wolpe P (eds) Protocol Specification, Testing and Verification (PSTV93), North-Holland, pp 341–354Google Scholar
  10. Cos95.
    Courtiat JP, Sadouni DE (1995) Relating maximality-based semantics to action refinement in process algebrasGoogle Scholar
  11. Dah09.
    Dahmani D (2009) Extensions of recursive Petri nets for temporal analysis of systems with dynamic structure. Doctoral thesis. University of Science and Technology Houari Boumediene algeriaGoogle Scholar
  12. Dad89.
    Darondeau P, Degano P (1989) Causal trees. In: ICALP’89, LNCS, vol 372. Springer, pp 234-248Google Scholar
  13. Dad91.
    Darondeau P, Degano P (1991) About semantic action refinement. Fundam Inf 14: 221–234zbMATHMathSciNetGoogle Scholar
  14. Dad93.
    Darondeau P, Degano P (1993) Refinement of actions in event structures and causal trees. TCS 118: 21–48zbMATHMathSciNetCrossRefGoogle Scholar
  15. Deg91.
    Degano P, Gorrieri R (1991) Atomic refinement in process description languages. In: Tarlecki A (ed) Mathematical Foundations of Computer Science, LNCS, vol 520. Springer pp 121–130Google Scholar
  16. Dev92a.
    Devillers R (1992) Maximality preservation and the ST-idea for action refinement. In: Rozenberg G (ed) Advances in Petri Nets, LNCS, vol 609. Springer pp 108–151Google Scholar
  17. Dev92b.
    Devillers R (1992) Maximality preserving bisimulation. TCS 102: 165–183zbMATHMathSciNetCrossRefGoogle Scholar
  18. Dev93.
    Devillers R (1993) Construction of S-invariants and S-components for refined Petri boxes. In: Marsan MA (ed) ATPN93, LNCS, vol 691. Springer, pp 242–261Google Scholar
  19. Dij71.
    Dijkstra EW (1971) Hierarchical ordering of sequential processes. Acta Inf 1(2): 115–138MathSciNetCrossRefGoogle Scholar
  20. Hol94.
    Hogrefe D, Leue S (eds) (1994) IFIP TC6/WG6.1, 7th Int. Conf. on Formal Description Techniques (FORTE94), Chapman, Hall, pp 293–308Google Scholar
  21. Jpz91.
    Janssen W, Poel M, Zwiers J (1991) Action systems and action refinement in the development of parallel systems, CONCUR91, LNCS, vol 527. Springer, pp 298–316Google Scholar
  22. Sai96.
    Saidouni DE (1996) Maximality semantic: Application to actions refinement in LOTOS, Ph.D. thesis., LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse Cedex FranceGoogle Scholar
  23. Sbb08a.
    Saidouni DE, Belala N, Bouneb M (2008) Using maximality- based labeled transitions as model for Petri nets. The International Arab Conference on Information Technology(ACIT)Google Scholar
  24. Sbb08b.
    Saidouni DE, Belala N, Bouneb M (2008) Aggregation of transitions in marking graph generation based on maximality semantics for Petri nets. Verification and Evalution of Computer and Communication systems (VECOS)Google Scholar
  25. Sbb09a.
    Saidouni DE, Belala N, Bouneb M (2009) Using maximality- based labeled transitions as model for Petri nets. Int Arab J Inf Technol (IAJIT)Google Scholar
  26. Sbb09b.
    Saidouni DE, Belala N, Bouneb M (2009) Maximality-Based Structural Operational Semantics for Petri Nets. In: 2nd Mediterranean Conference on Intelligent Systems and Automation (CISA)Google Scholar
  27. Sac03.
    Saidouni DE, Courtiat JP (2003) Prise en compte de durées d’actions dans les algébres de processus par l’utilisation de la sémantique de maximalité. In ingénierie des protocoles (CFIP’03). Hermes, FranceGoogle Scholar
  28. Sac94.
    Saidouni DE, Courtiat JP (1994) Syntactic action refinement in presence of multiway synchronization. Semant Specif Lang 289–303Google Scholar
  29. Sbi13.
    Saidouni DE, Bouneb M, Ilie JM (2013) Maximality semantic for recursive Petri net. Europeen conference on modelling and simulation(ECMS’13). pp 544–550. ISBN 978-0-9564944-7-4Google Scholar
  30. Sep99a.
    Serge H, Denis P (1999) Recursive Petri nets: theory and application to discrete event systems. Acta InfGoogle Scholar
  31. Sep99b.
    Serge H, Denis P (1999) Theoretical Aspects of Recursive Petri Nets. Application and Theory of Petri Nets. Lecture Notes in Computer Science, volume 1639. Springer pp 228–247Google Scholar
  32. Van90.
    Van Glabbeek RJ (1990) The refinement theorem for ST-bisimulation semantics. In: IFIP Working Conference on Programming Concepts and Methods, North-HollandGoogle Scholar
  33. vog93.
    Vogler W (1993) Bisimulation and actions refinement. TCS 114: 173–200zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© British Computer Society 2015

Authors and Affiliations

  • Messaouda Bouneb
    • 1
    • 2
    Email author
  • Djamel Eddine Saidouni
    • 2
  • Jean Michel Ilie
    • 3
  1. 1.Department of Mathematics and Computer SciencesEl Arbi ben Mhidi UniversityOum el bouaghiAlgeria
  2. 2.MISC Laboratory, Department of Fundamental Informatics and its ApplicationsUniversity Constantine 2Abdelhamid MehriAlgeria
  3. 3.Department of Computer SciencesPierre and Marie Curie UniversityParisFrance

Personalised recommendations