Formal Aspects of Computing

, Volume 24, Issue 4–6, pp 701–726 | Cite as

Characterisations of testing preorders for a finite probabilistic π-calculus

  • Yuxin DengEmail author
  • Alwen Tiu
Original Article


We consider two characterisations of the may and must testing preorders for a probabilistic extension of the finite π-calculus: one based on notions of probabilistic weak simulations, and the other on a probabilistic extension of a fragment of Milner–Parrow–Walker modal logic for the π-calculus. We base our notions of simulations on similar concepts used in previous work for probabilistic CSP. However, unlike the case with CSP (or other non-value-passing calculi), there are several possible definitions of simulation for the probabilistic π-calculus, which arise from different ways of scoping the name quantification. We show that in order to capture the testing preorders, one needs to use the “earliest” simulation relation (in analogy to the notion of early (bi)simulation in the non-probabilistic case). The key ideas in both characterisations are the notion of a “characteristic formula” of a probabilistic process, and the notion of a “characteristic test” for a formula. As in an earlier work on testing equivalence for the π-calculus by Boreale and De Nicola, we extend the language of the π-calculus with a mismatch operator, without which the formulation of a characteristic test will not be possible.


Probabilistic π-calculus Testing semantics Bisimulation Modal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABD11.
    Acciai L, Boreale M, De Nicola R (2011) Linear-time and may-testing in a probabilistic reactive setting. In: Proceedings of the conference on FMOODS/FORTE. LNCS, vol 6722. Springer, Berlin, pp 29–43Google Scholar
  2. BD95.
    Boreale M, De Nicola R (1995) Testing equivalence for mobile processes. Inf Comput 120(2): 279–303MathSciNetzbMATHCrossRefGoogle Scholar
  3. CP07.
    Chatzikokolakis K, Palamidessi C (2007) A framework for analyzing probabilistic protocols and its application to the partial secrets exchange. Theor Comput Sci 389(3): 512–527MathSciNetzbMATHCrossRefGoogle Scholar
  4. CSV07.
    Cheung L, Stoelinga M, Vaandrager F (2007) A testing scenario for probabilistic processes. J ACM 54(6): 1–45MathSciNetCrossRefGoogle Scholar
  5. DH84.
    De Nicola R, Hennessy M (1984) Testing equivalences for processes. Theor Comput Sci 34: 83–133MathSciNetzbMATHCrossRefGoogle Scholar
  6. DvGH+07.
    Deng Y, van Glabbeek RJ, Hennessy M, Morgan C, Zhang C (2007) Remarks on testing probabilistic processes. ENTCS 172: 359–397Google Scholar
  7. DvGHM08.
    Deng Y, van Glabbeek RJ, Hennessy M, Morgan C (2008) Characterising testing preorders for finite probabilistic processes. Logical Methods Comput Sci 4(4): 1–33Google Scholar
  8. DvGHM09.
    Deng Y, van Glabbeek RJ, Hennessy M, Morgan C (2009) Testing finitary probabilistic processes. In: Proceedings of the conference on CONCUR. LNCS, vol 5710. Springer, Berlin, pp 274–288Google Scholar
  9. DvGMZ07.
    Deng Y, van Glabbeek RJ, Morgan C, Zhang C (2007) Scalar outcomes suffice for finitary probabilistic testing. In: Proceedings of the conference on ESOP. LNCS, vol 4421. Springer, Berlin, pp 363–378Google Scholar
  10. FMQ95.
    Ferrari GL, Montanari U, Quaglia P (1995) The weak late pi-calculus semantics as observation equivalence. In: Proceeding of the conference on CONCUR. LNCS, vol 962. Springer, Berlin, pp 57–71Google Scholar
  11. Hen82.
    Hennessy M (1982) Power domains and nondeterministic recursive definitions. In: Proceedings of the conference symposium on programming. LNCS, vol 137. Springer, Berlin, pp 178–193Google Scholar
  12. Hen88.
    Hennessy M (1988) Algebraic Theory of Processes. MIT Press, CambridgezbMATHGoogle Scholar
  13. HJ90.
    Hansson H, Jonsson B (1990) A calculus for communicating systems with time and probabilities. In: Proceedings of the conference on IEEE real time systems symposium, pp 278–287Google Scholar
  14. Hoa85.
    Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  15. HP00.
    Herescu OM, Palamidessi C (2000) Probabilistic asynchronous pi-calculus. In: Proceedings of the conference on FoSSaCS. LNCS, vol 1784, Springer, Berlin, pp 146–160Google Scholar
  16. Ing95.
    Ingólfsdóttir A (1995) Late and early semantics coincide for testing. Theor Comput Sci 146(1–2): 341–349zbMATHCrossRefGoogle Scholar
  17. MPW92.
    Milner R, Parrow J, Walker D (1992) A calculus of mobile processes, II. Inf Comput 100(1): 41–77MathSciNetzbMATHCrossRefGoogle Scholar
  18. MPW93.
    Milner R, Parrow J, Walker D (1993) Modal logics for mobile processes. Theor Comput Sci 114(1): 149–171MathSciNetzbMATHCrossRefGoogle Scholar
  19. NPPW09.
    Norman G, Palamidessi C, Parker D, Wu P (2009) Model checking probabilistic and stochastic extensions of the pi-calculus. IEEE Trans Softw Eng 35(2): 209–223CrossRefGoogle Scholar
  20. PS07.
    Parma A, Segala R (2007) Logical characterizations of bisimulations for discrete probabilistic systems. In: Proceedings of the conference on FOSSACS. LNCS, vol 4423. Springer, Berlin, pp 287–301Google Scholar
  21. San96.
    Sangiorgi D (1996) Bisimulation for higher-order process calculi. Inf Comput 131(2): 141–178MathSciNetzbMATHCrossRefGoogle Scholar
  22. San98.
    Sangiorgi D (1998) On the bisimulation proof method. Math Struct Comput Sci 8(5): 447–479MathSciNetzbMATHCrossRefGoogle Scholar
  23. Seg96.
    Segala R (1996) Testing probabilistic automata. In: Proceedings of the conference on CONCUR. LNCS, vol 1119. Springer, Berlin, pp 299–314Google Scholar
  24. SL94.
    Segala R, Lynch NA (1994) Probabilistic simulations for probabilistic processes. In: Proceedings of the conference on CONCUR, LNCS, vol 836. Springer, Berlin, pp 481–496Google Scholar
  25. SW01.
    Sangiorgi D, Walker D (2001) π-calculus: a theory of mobile processes. Cambridge University Press, CambridgezbMATHGoogle Scholar
  26. vGSS95.
    Van Glabbeek RJ, Smolka SA, Steffen B (1995) Reactive, generative and stratified models of probabilistic processes. Inf Comput 121(1): 59–80MathSciNetzbMATHCrossRefGoogle Scholar
  27. vGW96.
    Van Glabbeek RJ, Weijland WP (1996) Branching time and abstraction in bisimulation semantics. J ACM 43(3): 555–600MathSciNetzbMATHCrossRefGoogle Scholar
  28. YL92.
    Wang Y, Larsen KG (1992) Testing probabilistic and nondeterministic processes. In: Proceedings of the conference on PSTV. IFIP transactions, vol C-8. North-Holland, Amsterdam, pp 47–61Google Scholar

Copyright information

© British Computer Society 2012

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Computer ScienceInstitute of Software, Chinese Academy of SciencesBeijingChina
  3. 3.Research School of Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations