Advertisement

Formal Aspects of Computing

, Volume 20, Issue 4–5, pp 351–377 | Cite as

Bisimulations in calculi modelling membranes

  • Roberto Barbuti
  • Andrea Maggiolo-Schettini
  • Paolo Milazzo
  • Angelo Troina
Original Article

Abstract

Bisimulations are well-established behavioural equivalences that are widely used to study properties of computer science systems. Bisimulations assume the behaviour of systems to be described as labelled transition systems, and properties of a system can be verified by assessing its bisimilarity with a system one knows to enjoy those properties.

In this paper we show how semantics based on labelled transition systems and bisimulations can be defined for two formalisms for the description of biological systems, both capable of describing membrane interactions. These two formalisms are the Calculus of Looping Sequences (CLS) and Brane Calculi, and since they stem from two different approaches (rewrite systems and process calculi) bisimulation appears to be a good candidate as a general verification method.

We introduce CLS and define a labelled semantics and bisimulations for which we prove some congruence results. We show how bisimulations can be used to verify properties by way of two examples: the description of the regulation of lactose degradation in Escherichia coli and the description of the EGF signalling pathway. We recall the PEP calculus (the simplest of Brane Calculi) and its translation into CLS, we define a labelled semantics and some bisimulation congruences for PEP processes, and we prove that bisimilar PEP processes are translated into bisimilar CLS terms.

Keywords

Calculus of Looping Sequences Brane Calculi Labelled Semantics Bisimulations Bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABI+01.
    Alur R, Belta C, Ivancic F, Kumar V, Mintz M, Pappas GJ, Rubin H, Schug J (2001) Hybrid Modeling and Simulation of Biomolecular Networks. In: Proceedings of hybrid systems: computation and control, LNCS 2034. Springer, Heidelberg, pp 19–32Google Scholar
  2. AMP+04.
    Antoniotti M, Mishra Piazza C, Policriti A, Simeoni M (2004) Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice. Theor Comput Sci 325:46–67CrossRefGoogle Scholar
  3. BMM+06a.
    Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2006) A calculus of looping sequences for modelling microbiological systems. Fundam Inf 72:1–15MathSciNetGoogle Scholar
  4. BMM+06b.
    Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2006) Bisimulation congruences in the calculus of looping sequences. In: Proceedeings of international colloquium on theoretical computer science (ICTAC’06), LNCS 4281. Springer, Heidelberg, pp 93–107Google Scholar
  5. Bus06.
    Busi N (2006) Deciding behavioural properties in Brane Calculi. In: Proceedings of computational methods in systems biology (CMSB’06), LNBI 4210. Springer, Heidelberg, pp 17–31Google Scholar
  6. Bus07.
    Busi N (2007) Towards a causal semantics for Brane Calculi. In: Proceedings of the fifth brainstorming week on membrane computing, pp 97–111Google Scholar
  7. Car05.
    Cardelli L (2005) Brane Calculi. Interactions of Biological Membranes. In: Proceedings of computational methods in systems biology (CMSB’04), LNCS 3082. Springer, Heidelberg, pp 257–280Google Scholar
  8. CCD04.
    Chabrier-Rivier N, Chiaverini M, Danos V, Fages F, Schachter V (2004) Modeling and querying biomolecular interaction networks. Theor Comput Sci 325:25-44zbMATHCrossRefMathSciNetGoogle Scholar
  9. CDP+04.
    Curti M, Degano P, Priami C, Baldari CT (2004) Modelling biochemical pathways through enhanced pi-calculus. Theor Comput Sci 325:111–140zbMATHCrossRefMathSciNetGoogle Scholar
  10. DaL04.
    Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–110zbMATHCrossRefMathSciNetGoogle Scholar
  11. DeH84.
    De Nicola R, Hennessy M (1984) Testing equivalences for processes. Theor Comput Sci 34:83–133zbMATHCrossRefMathSciNetGoogle Scholar
  12. LaT06.
    Laneve C, Tarissan F (2006) A simple calculus for proteins and cells. In: Proceedings of membrane computing and biologically inspired process calculi (MeCBIC’06)Google Scholar
  13. LeM00.
    Leifer J, Milner R (2000) Deriving bisimulation congruences for reactive systems. In: Proceedings of concurrency theory (CONCUR’00), LNCS 1877. Springer, Heidelberg, pp 243–258Google Scholar
  14. MDN+00.
    Matsuno H, Doi A, Nagasaki M, Miyano S (2000) Hybrid petri net representation of gene regulatory network. In: Proceedings of pacific symposium on biocomputing. World Scientific Press, pp 341–352Google Scholar
  15. MiB06.
    Miculan M, Bacci G (2006) Modal logics for brane calculus. In: Proceedings of computational methods in systems biology (CMSB’06), LNBI 4210. Springer, Heidelberg, pp 1–16Google Scholar
  16. Mil07.
    Milazzo P (2007) Qualitative and quantitative formal modeling of biological systems, PhD Thesis, University of PisaGoogle Scholar
  17. Mil89.
    Milner R (1989) Communication and concurrency. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  18. Mil99.
    Milner R (1999) Communicating and mobile systems: the π–calculus. Cambridge University Press, CambridgeGoogle Scholar
  19. MiS92.
    Milner R, Sangiorgi D (1992) Barbed bisimulation. In: Proceedings of international colloquium on automata, Languages and Programming (ICALP’92), LNCS 623, pp 685–695Google Scholar
  20. PFM+07.
    Pinto MC, Foss F, Mombach JCM, Ribeiro L (2007) Modelling, property verification and behavioural equivalence of lactose operon regulation. Comput Biol Med 37:134–148CrossRefGoogle Scholar
  21. PrQ05.
    Priami C, Quaglia P (2005) Beta binders for biological interactions. In: Proceedings of computational methods in systems biology (CMSB’04), LNCS 3082. Springer, Heidelberg, pp 20–33Google Scholar
  22. RPS+04.
    Regev A, Panina EM, Silverman W, Cardelli L, Shapiro E (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325:141–167zbMATHCrossRefMathSciNetGoogle Scholar
  23. RSS01.
    Regev A, Silverman W, Shapiro EY (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proceedings of Pacific symposium on biocomputing. World Scientific Press, pp 459–470Google Scholar
  24. San96.
    Sangiorgi D (1996) Bisimulation for higher-order process calculi. Inf Comput 131:141–178zbMATHCrossRefMathSciNetGoogle Scholar
  25. Sew02.
    Sewell P (2002) From rewrite rules to bisimulation congruences. Theor Comput Sci 274:183–230zbMATHCrossRefMathSciNetGoogle Scholar
  26. SHJ+93.
    Straight SW, Hinkle PM, Jewers RJ, McCance DJ (1993) The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67:4521–4532Google Scholar
  27. Yar01.
    Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanism and therapeutic opportunities. Eur J Cancer 37:S3–S8CrossRefGoogle Scholar
  28. YS01.
    Yarden Y, Sliwkowski MK (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137CrossRefGoogle Scholar
  29. vG190.
    van Glabbeek RJ (1990) The linear time-branching time spectrum. In: Proceedings of international conference on concurrency theory (CONCUR’90), LNCS 458, pp 278–297Google Scholar

Copyright information

© British Computer Society 2008

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Andrea Maggiolo-Schettini
    • 1
  • Paolo Milazzo
    • 1
  • Angelo Troina
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Dipartimento di InformaticaUniversità di TorinoTorinoItaly

Personalised recommendations