Advertisement

Formal Aspects of Computing

, Volume 20, Issue 1, pp 41–59 | Cite as

Verification of Mondex electronic purses with KIV: from transactions to a security protocol

  • Dominik HanebergEmail author
  • Gerhard Schellhorn
  • Holger Grandy
  • Wolfgang Reif
Original Article

Abstract

The Mondex case study about the specification and refinement of an electronic purse as defined in the Oxford Technical Monograph PRG-126 has recently been proposed as a challenge for formal system-supported verification. In this paper we report on two results.

First, on the successful verification of the full case study using the KIV specification and verification system. We demonstrate that even though the hand-made proofs were elaborated to an enormous level of detail we still could find small errors in the underlying data refinement theory, as well as the formal proofs of the case study.

Second, the original Mondex case study verifies functional correctness assuming a suitable security protocol. We extend the case study here with a refinement to a suitable security protocol that uses symmetric cryptography to achieve the necessary properties of the security-relevant messages. The definition is based on a generic framework for defining such protocols based on abstract state machines (ASMs). We prove the refinement using a forward simulation.

Keywords

Mondex Refinement ASM Verification Security protocol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAN90.
    Burrows M, Abadi M, Needham R (1990) A logic of authentication. ACM Trans Comput Syst 8(1)Google Scholar
  2. BCK96.
    Bellare M, Canetti R, Krawczyk H (1996) Keying hash functions for message authentication. In: Koblitz N (eds) Advances in Cryptology—Crypto 96 Proceedings, vol 1109 of LNCS. Springer, HeidelbergGoogle Scholar
  3. BDRS02.
    Balser M, Duelli C, Reif W, Schellhorn G (2002) Verifying concurrent systems with symbolic execution. J Logic Comput 12(4):549–560zbMATHCrossRefMathSciNetGoogle Scholar
  4. BDS07.
    Boiten E, Derrick J, Schellhorn G (2007) Relational concurrent refinement part ii: intenral operations and ouputs. FAC (under consideration)Google Scholar
  5. BMV03.
    Basin D, Mödersheim S, Viganò L (2003) An on-the-fly model-checker for security protocol analysis. In: Proceedings of Esorics’03, LNCS 2808, Springer, Heidelberg, pp 253–270Google Scholar
  6. Bör03.
    Börger E (2003) The ASM refinement method. Form Aspects Comput 15(1–2):237–257zbMATHCrossRefGoogle Scholar
  7. BR95.
    Börger E, Rosenzweig D (1995) The WAM-definition and compiler correctness. In: Beierle C, Plümer L (eds) Logic Programming: Formal Methods and Practical Applications Studies in Computer Science and Artificial Intelligence 11. North-Holland, Amsterdam, pp 20–90Google Scholar
  8. BS03.
    Börger E, Stärk RF (2003) Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, HeidelbergzbMATHGoogle Scholar
  9. Car94.
    Carlsen U (1994) Generating formal cryptographic protocol specifications. In: IEEE Symposium on Research in Security and Privacy. IEEE Computer Society, pp 137–146Google Scholar
  10. CB99.
    UK ITSEC Certification Body (1999) UK ITSEC Scheme Certification Report No. P129 Mondex Purse. Technical report, UK IT Security Evaluation and Certification Scheme, URL: http://www.cesg.gov.uk/site/iacs/itsec/media/certreps/CRP129.pdf
  11. CJM98.
    Clarke EM, Jha S, Marrero W (1998) Using state space exploration and a natural deduction style message derivation engine to verify security protocols. In: Proceedings of the IFIP Working Conference in Programming Concepts and Methods (PROCOMET’98)Google Scholar
  12. Cla96.
    Clarke R (1996) The Mondex Value-Card Scheme, chap.~4. Xamax Consultancy Pty Ltd, URL: http://www.anu.edu.au/people/Roger.Clarke/EC/Mondex.html
  13. CoF04.
    CoFI (2004) (The Common Framework Initiative). Casl Reference Manual. LNCS 2960 (IFIP Series). Springer, HeidelbergGoogle Scholar
  14. CSW02.
    Cooper D, Stepney S, Woodcock J (2002) Derivation of Z refinement proof rules: forwards and backwards rules incorporating input/output refinement. Technical Report YCS-2002-347, University of York, URL: http://www-users.cs.york.ac.uk/~susan/bib/ss/z/zrules.htm
  15. DB01.
    Derrick J, Boiten E (2001) Refinement in Z and in Object-Z : foundations and advanced applications. FACIT. Springer, HeidelbergGoogle Scholar
  16. DY81.
    Dolev D, Yao AC (1981) On the security of public key protocols. In: Proceedings of the 22nd IEEE symposium on foundations of computer science, pp 350–357Google Scholar
  17. Far94.
    Farmer WM (1994) Theory interpretation in simple type theory. In: Heering J et al (eds) Higher-order algebra, logic, and term rewriting, vol 816. Lecture Notes in Computer Science. Springer, HeidelbergGoogle Scholar
  18. GHRS06.
    Grandy H, Haneberg D, Reif W, Stenzel K (2006) Developing provably secure M-commerce applications. In: Müller G (eds). Emerging trends in information and communication security, vol 3995 of LNCS. Springer, Heidelberg, pp 115–129CrossRefGoogle Scholar
  19. GMB+06.
    Grandy H, Moebius N, Bischof M, Haneberg D, Schellhorn G, Stenzel K, Reif W (2006) The Mondex case study: from specifications to code. Technical Report 2006-31, University of Augsburg, URL: http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications
  20. GSR05.
    Grandy H, Stenzel K, Reif W (2005) Object-oriented verification Kernels for secure Java applications. In: Aichering B, Beckert B (eds) SEFM 2005—3rd ieee international conference on software engineering and formal methodsGoogle Scholar
  21. GSR06.
    Grandy H, Stenzel K, Reif W (2006) A refinement method for Java programs. Technical Report 2006-29, University of Augsburg URL: http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications
  22. GSR07.
    Grandy H, Stenzel K, Reif W (2007) A refinement method for Java programs. In: Formal methods for open object-based distributed systems, vol 4468 of Lecture Notes in Computer Science. Springer, HeidelbergGoogle Scholar
  23. Gur95.
    Gurevich Y (1995) Evolving algebras 1993: Lipari guide. In: Börger E (eds) Specification and validation methods. Oxford University Press, Oxford, pp 9–36Google Scholar
  24. Han06.
    Haneberg D (2006) Sicherheit von Smart Card—Anwendungen (in German). PhD thesis, University of Augsburg, Augsburg, GermanyGoogle Scholar
  25. HGRS05.
    Haneberg D, Grandy H, Reif W, Schellhorn G (2005) Verifying security protocols: an ASM approach. In: Beauquier D, Börger E, Slissenko A (eds) 12th International workshop on abstract state machines, ASM 05. University Paris 12, Val de Marne, Créteil, FranceGoogle Scholar
  26. HGRS07.
    Haneberg D, Grandy H, Reif W, Schellhorn G (2007) Verifying smart card applications: an ASM approach. In: Gibbons J, Davies J (eds) Proceedings of the international conference on integrated formal methods (iFM) 2007, vol 4591 of LNCS. Springer, Heidelberg, pp 313–332Google Scholar
  27. HHS86.
    Jifeng H, Hoare CAR, Sanders JW (1986) Data refinement refined. In: Robinet B, Wilhelm R (eds) Proceedings of ESOP 86, vol 213 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 187–196Google Scholar
  28. HKT00.
    Harel D, Kozen D, Tiuryn J (2000) Dynamic logic. MIT, CambridgezbMATHGoogle Scholar
  29. Jür02.
    Jürjens J (2002) UMLsec: Extending UML for secure systems development. In: Jézéquel J-M, Hussmann H, Cook S (eds) UML 2002—The Unified Modeling Language 5th International Conference, Dresden, Germany, Springer, LNCS 2460Google Scholar
  30. Jür05.
    Jürjens J (2005) Secure systems development with UML. Springer, Heidelberg, ISBN: 3-540-00701-6Google Scholar
  31. KIV.
    Web presentation of the mondex case study in KIV, URL: http://www.informatik.uni-augsburg.de/swt/projects/mondex.html
  32. KOF07.
    Kong W, Ogata K, Futatsugi K (2007) Algebraic approaches to formal analysis of the mondex electronic purse system. In: Gibbons J, Davies J (eds) Proceedings of the international conference on integrated formal methods (iFM) 2007, vol 4591 of LNCS. Springer, Heidelberg, pp 393–412Google Scholar
  33. Low96.
    Lowe G (1996) Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In: Tools and algorithms for the construction and analysis of systems (TACAS), vol 1055. Springer, BerlinGoogle Scholar
  34. MCJ97.
    Marrero W, Clarke E, Jha S (1997) A model checker for authentication protocols. In: Proceedings of the DIMACS workshop on design and formal verication of security protocolsGoogle Scholar
  35. MHSR07.
    Moebius N, Haneberg D, Schellhorn G, Reif W (2007) A modeling framework for the development of provably secure E-Commerce applications. In: Proceedings of the international conference on software engineering advances 2007. IEEE Computer Society Press (accepted for publication)Google Scholar
  36. Pau98.
    Paulson LC (1998) The inductive approach to verifying cryptographic protocols. J Comput Secur. 6 Google Scholar
  37. Pau99.
    Paulson LC (1999) Inductive analysis of the Internet protocol TLS. ACM Trans Inf Syst Secur 2(3):332–351CrossRefGoogle Scholar
  38. Pau01.
    Paulson LC (2001) Verifying the SET protocol. In: Gore R, Leitsch A, Nipkow T (eds) IJCAR 2001: international joint conference on automated reasoning, Siena, Italy. Springer, LNCS 2083Google Scholar
  39. RJ06.
    Ramananadro T, Jackson D (2006) Mondex, an electronic purse: specification and refinement checks with the alloy model-finding method, URL: http://www.eleves.ens.fr/home/ramanana/work/mondex
  40. RSG+01.
    Ryan PYA, Schneider SA, Goldsmith MH, Lowe G, Roscoe B (2001) The modelling and analysis of security protocols: the CSP approach. Addison-Wesley, ReadingGoogle Scholar
  41. RSSB98.
    Reif W, Schellhorn G, Stenzel K, Balser M (1998) Structured specifications and interactive proofs with KIV. In: Bibel W, Schmitt P (eds) Automated deduction—a basis for applications, vol II: Systems and implementation techniques, Chap. 1: Interactive theorem proving. Kluwer, Dordrecht, pp 13–39Google Scholar
  42. SA97.
    Schellhorn G, Ahrendt W (1997) Reasoning about abstract state machines: The WAM case study. J Univer Comput Sci (J.UCS) 3(4):377–413, URL: http://www.jucs.org Google Scholar
  43. SA98.
    Schellhorn G, Ahrendt W (1998) The WAM case study: verifying compiler correctness for prolog with KIV. In: Bibel W, Schmitt P (eds) Automated deduction—a basis for applications. Kluwer, Dordrecht, pp 165–194Google Scholar
  44. SBP01.
    Song D, Berezin S, Perrig A (2001) Athena: a novel approach to efficient automatic security protocol analysis. J Comput Secur (Special Issue CSFW12) 9(1,2):47–74Google Scholar
  45. Sch99.
    Schellhorn G (1999) Verification of abstract state machines. PhD thesis, Universität Ulm, Fakultät für Informatik, URL: http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications
  46. Sch01.
    Schellhorn G (2001) Verification of ASM refinements using generalized forward simulation. J Univ Comput Sci (J.UCS), 7(11):952–979, URL: http://www.jucs.org
  47. Sch05.
    Schellhorn G (2005) ASM refinement and generalizations of forward simulation in data refinement: a comparison. J Theor Comput Sci 336(2–3):403–435zbMATHCrossRefMathSciNetGoogle Scholar
  48. SCW00.
    Stepney S, Cooper D, Woodcock J (2000) An electronic purse specification, refinement, and proof. Technical monograph PRG-126, Oxford University Computing Laboratory, URL: http://www-users.cs.york.ac.uk/~susan/bib/ss/z/monog.htm
  49. SGH+07.
    Schellhorn G, Grandy H, Haneberg D, Moebius N, Reif W (2007) A systematic verification approach for mondex electronic purses using ASMs. In: Glässer U, Abrial J-R (ed) Proceedings of the Dagstuhl seminar on rigorous methods for software construction and analysis, LNCS. Springer, Heidelberg (accepted, older version available as Techn. Report 2006-27 at [KIV])Google Scholar
  50. SGHR06a.
    Schellhorn G, Grandy H, Haneberg D, Reif W (2006) The Mondex challenge: machine checked proofs for an electronic purse. In: Misra J, Nipkow T, Sekerinski E (eds) Formal methods 2006, Proceedings, vol 4085 of LNCS. Springer, Heidelberg, pp 16–31CrossRefGoogle Scholar
  51. SGHR06b.
    Schellhorn G, Grandy H, Haneberg D, Reif W (2006) The Mondex challenge: machine checked proofs for an electronic purse. Technical Report 2006-2, Universität AugsburgGoogle Scholar
  52. Spi92.
    Michael Spivey J (1992) The Z notation: a reference manual. International Series in Computer Science, 2nd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  53. Ste04.
    Stenzel K (2004) A formally verified calculus for full Java card. In: Rattray C, Maharaj S, Shankland C (eds) Algebraic methodology and software technology (AMAST) 2004, Proceedings, Stirling Scotland. Springer, LNCS 3116Google Scholar
  54. TOWS04.
    Thums A, Ortmeier F, Reif W, Schellhorn G (2004) Interactive verification of statecharts. In: Ehrig H (ed) Integration of software specification techniques for applications in engineering Springer, LNCS 3147, pp 355–373Google Scholar
  55. WD96.
    Woodcock JCP, Davies J (1996) Using Z: Specification, proof and refinement. International Series in Computer Science. Prentice Hall, Englewood CliffsGoogle Scholar
  56. WF06.
    Woodcock J, Freitas L (2006) Z/eves and the mondex electronic purse. In: Cerone A, Barkaoui K, Cavalcanti A (eds) Theoretical aspects of computing—ICTAC 2006, 3rd international colloquium, LNCS 4281 Tunis. Springer, Heidelberg, pp 14–34Google Scholar
  57. Zar98.
    Zarba CG (1998) Model checking the Needham–Schroeder protocol, URL: http://www-step.stanford.edu/case-studies/security

Copyright information

© British Computer Society 2007

Authors and Affiliations

  • Dominik Haneberg
    • 1
    Email author
  • Gerhard Schellhorn
    • 1
  • Holger Grandy
    • 1
  • Wolfgang Reif
    • 1
  1. 1.Lehrstuhl für Softwaretechnik und ProgrammiersprachenUniversität AugsburgAugsburgGermany

Personalised recommendations