Formal Aspects of Computing

, Volume 19, Issue 1, pp 93–109 | Cite as

Parametric probabilistic transition systems for system design and analysis

  • Ruggero Lanotte
  • Andrea Maggiolo-Schettini
  • Angelo Troina
Original Article


We develop a model of parametric probabilistic transition Systems (PPTSs), where probabilities associated with transitions may be parameters. We show how to find instances of the parameters that satisfy a given property and instances that either maximize or minimize the probability of reaching a certain state. As an application, we model a probabilistic non-repudiation protocol with a PPTS. The theory we develop allows us to find instances that maximize the probability that the protocol ends in a fair state (no participant has an advantage over the others).


Discrete-time Markov chains Parameters Reachability Probabilistic non-repudiation protocol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ald02.
    Aldini A, Gorrieri R (2002) Security analysis of a probabilistic non-repudiation protocol. In: Proceedings. of PAPM-PROBMIV’02, Springer LNCS 2399, pp 17–36Google Scholar
  2. Alf98.
    de Alfaro L (1998) How to specify and verify the long-run average behaviour of probabilistic systems. In: Proceedings of LICS’98, IEEE, pp 454–465Google Scholar
  3. Alf99.
    de Alfaro L (1999) Computing minimum and maximum reachability times in probabilistic systems. In: Proceedings. of CONCUR’99, Springer LNCS 1664, pp 66–81Google Scholar
  4. AHV93.
    Alur R, Henzinger TA, Vardi MY (1993) Parametric real-time reasoning. In: Proceedings. of STOC’93, ACM, pp 592–601Google Scholar
  5. AD94.
    Alur R, Dill DL (1994) A theory of timed automata. Theoret Comput Sci 126:183–235zbMATHCrossRefMathSciNetGoogle Scholar
  6. UPPAAL.
    Amnell T, Behrmann G, Bengtsson J, D’Argenio PR, David A, Fehnker A, Hune T, Jeannet B, Larsen KG, Moeller MO, Pettersson P, Weise C, Yi W (2000) Uppaal-now, next and future. In: Proceedings. of MOVEP’00, Springer LNCS 2067, pp 99–124Google Scholar
  7. BBS95.
    Baeten JCM, Bergstra JA, Smolka SA (1995) Axiomatizing probabilistic processes: ACP with generative probabilities. Inform Comput 121:234–255zbMATHCrossRefMathSciNetGoogle Scholar
  8. BK98a.
    Baier C, Kwiatkowska M (1998) On the verification of qualitative properties of probabilistic processes under fairness constraints. Inform Process Lett 66:71–79zbMATHCrossRefMathSciNetGoogle Scholar
  9. BK98b.
    Baier C, Kwiatkowska M (1998) Model checking for probabilistic time logic with fairness. Distrib Comput 11:125–155CrossRefGoogle Scholar
  10. Bea02.
    Beauquier D (2002) Markov decision processes and Buchi automata. Fundam Inform 50:1–13zbMATHMathSciNetGoogle Scholar
  11. Bel57.
    Bellman RE (1957) Dynamic programming. Princeton University Press, PrincetonGoogle Scholar
  12. BdA95.
    Bianco A, de Alfaro L (1995) Model checking of probabilistic and deterministic systems. In: Proceedings of 15th Conference on foundations of computer technology and theoretical computer science, Springer LNCS 1026, pp 499–513Google Scholar
  13. BSHV03.
    Bohnenkamp H, van der Stok P, Hermanns H, Vaandrager F (2003) Costoptimization of the IPv4 zeroconf protocol. In: Proceedings of DSN’03, IEEE, pp 531–540Google Scholar
  14. Cha88.
    Chaum DL (1988) The dining cryptographers problem: unconditional sender and recipient untraceability. J Cryptol 1(1):65–75zbMATHCrossRefMathSciNetGoogle Scholar
  15. CSZ92.
    Cleaveland R, Smolka SA, Zwarico A (1992) Testing preorders for probabilistic processes. In: Proceedings of ICALP’92, Springer LNCS 623, pp 708–719Google Scholar
  16. Daw04.
    Daws C (2004) Symbolic and parametric model checking of discrete-time markov Chains. In: Proceedings of ICTAC’04, Springer LNCS 3407, pp 280–294Google Scholar
  17. DCPP05.
    Deng Y, Chothia T, Palamidessi C, Pang J (2006) Metrics for Action-labelled Quantitative Transition Systems. In: Proceedings of QAPL’05, Elsevier ENTCS 153(2), pp 79–96Google Scholar
  18. DJGP02.
    Desharnais J, Jagadeesan R, Gupta V, Panangaden P (2002) The metric analogue of weak bisimulation for probabilistic processes. In: Proceedings of LICS’02, IEEE, pp 413–422Google Scholar
  19. DJGP04.
    Desharnais J, Jagadeesan R, Gupta V, Panangaden P (2004) Metrics for labelled Markov processes. Theoret Comput Sci 318(3): 323–354zbMATHCrossRefMathSciNetGoogle Scholar
  20. DEP98.
    Desharnais J, Edalat A, Panangaden P (1998) A logic characterization of bisimulation for Markov Processes. In: Proceedings of LICS’98, IEEE, 478–487Google Scholar
  21. DGJP03.
    Desharnais J, Gupta V, Jagadeesan R, Panangaden P (2003) Approximating Labelled Markov Processes. Inform Comput 184:160–200zbMATHCrossRefMathSciNetGoogle Scholar
  22. Hal50.
    Halmos PR (1950) Measure theory. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  23. Han94.
    Hansson H (1994) Time and probability in formal design of distributed systems. Real-time safety critical systems 1, Elsevier, AmsterdamGoogle Scholar
  24. HJ94.
    Hansson H, Jonsson B (1994) A logic for reasoning about time and reliability. Formal Aspects Comput 6:512–535zbMATHCrossRefGoogle Scholar
  25. HHW97.
    Henzinger TA, Ho P-H, Wong-Toi H (1997) HyTech: a model checker for hybrid systems. In: Proceedings of CAV’97, Springer LNCS 1254, pp 460–463Google Scholar
  26. How60.
    Howard H (1960) Dynamic programming and Markov processes. MIT, CambridgezbMATHGoogle Scholar
  27. HRSV02.
    Hune T, Romijn J, Stoelinga M, Vaandrager FW (1960) Linear parametric model checking of timed automata. J Log Algebr Program 52–53: 183–220Google Scholar
  28. JL91.
    Jonsson B, Larsen K (1991) Specification and refinement of probabilistic processes. In: Proceedings of LICS’91, IEEE, pp 266–277Google Scholar
  29. KSK66.
    Kemeny J, Snell J, Knapp A (1996) Denumerable Markov chains. D. Van Nostrand Company Inc.,Google Scholar
  30. LMT03.
    Lanotte R, Maggiolo-Schettini A, Troina A (2003) Weak bisimulation for probabilistic timed automata and applications to security. In: Proceedings of SEFM’03, IEEE, pp 34–43Google Scholar
  31. LMT04.
    Lanotte R, Maggiolo-Schettini A, Troina A (2004) Decidability results for parametric probabilistic transition systems with an application to security. In: Proceedings of SEFM’04, IEEE, pp 114–121Google Scholar
  32. LMT05.
    Lanotte R, Maggiolo-Schettini A, Troina A (2005) Automatic analysis of a non-repudiation protocol. In: Proceedings of QAPL’03, Elsevier ENTCS 112, pp 113–129Google Scholar
  33. LS91.
    Larsen K, Skou A (1991) Bisimulation through probabilistic testing. Inform Comput 94:1–28zbMATHCrossRefMathSciNetGoogle Scholar
  34. Mal95.
    Maler O(1995) A decomposition theorem for probabilistic transition systems. Theoret Comput Sci 145:391–396zbMATHCrossRefMathSciNetGoogle Scholar
  35. MR99.
    Markowitch O, Roggeman Y (1999) Probabilistic non-repudiation without trusted third party. In: Proceedings of 2nd Conference on Security in Communication NetworkGoogle Scholar
  36. RSG98.
    Reed MG, Syverson PF, Goldschlag DM (1998) Anonymous connections and onion routing. IEEE J Select Areas Commun 16(4):482–494CrossRefGoogle Scholar
  37. RR98.
    Reiter MK, Rubin AD (1998) Crowds: anonymity for Web transactions. ACM Trans Inform and Syst Security 1(1):66–92CrossRefGoogle Scholar
  38. Ren92.
    Renegar J (1992) On the computational complexity and geometry of the first-order theory of the reals, Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J Symb Comput 13:255–300zbMATHMathSciNetCrossRefGoogle Scholar
  39. Ros83.
    Ross S (1983) Stochastic processes. Wiley, New YorkzbMATHGoogle Scholar
  40. SS98.
    Stark E, Smolka SA (1998) Compositional analysis of expected delays in networks of probabilistic I/O automata. In: Proceedings of LICS 98, IEEE, pp 466–477Google Scholar
  41. Ste89.
    Stewart I (1989) Galois theory. Chapman and Hall, LondonzbMATHGoogle Scholar
  42. TNHH98.
    Tanimoto T, Nakata A, Hashimoto H, Higashino T (2005) double depth first search based parametric analysis for parametric time–interval automata. IEICE Trans Fundam 11:3007–3021CrossRefGoogle Scholar
  43. Tar51.
    Tarski A (1951) A Decision method for elementary algebra and geometry, 2nd edn. University of California PressGoogle Scholar
  44. Wil91.
    Williams D (1991) Probability with martingales. Cambridge University press, CambridgezbMATHGoogle Scholar
  45. WSS97.
    Wu SH, Smolka SA, Stark E (1997) Composition and behaviors of probabilistic I/O automata. Theoret Comput Sci 176:1–38zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© British Computer Society 2006

Authors and Affiliations

  • Ruggero Lanotte
    • 1
  • Andrea Maggiolo-Schettini
    • 2
  • Angelo Troina
    • 2
  1. 1.Dipartimento di Scienze della Cultura, Politiche e dell’InformazioneUniversità dell’InsubriaComoItaly
  2. 2.Dipartimento di InformaticaUniversitá di pisaPisaItaly

Personalised recommendations