Advertisement

Research in Engineering Design

, Volume 28, Issue 1, pp 119–129 | Cite as

Innovative design for agriculture in the move towards sustainability: scientific challenges

  • Lorène ProstEmail author
  • Elsa T. A. Berthet
  • Marianne Cerf
  • Marie-Hélène Jeuffroy
  • Julie Labatut
  • Jean-Marc Meynard
Original Paper

Abstract

Agriculture is facing increasing innovation challenges to meet current societal expectations, yet very few design science studies are devoted to it. This paper highlights some of the particularities of the objects, reasoning and organization of design in agriculture that may open fruitful scientific dialogue between design scientists and agricultural scientists. We first provide an overview of the broad range of objects that are designed in agriculture and point out their specific characteristics with regard to design. We then identify some particular challenges of design activities in agriculture and review how they have been addressed up to now. Finally, we discuss how design challenges and characteristics in agriculture can contribute to current debate in the field of design science. We propose two main lines of enquiry and debate: enhancing the links between design reasoning and organization and further conceptualizing the status of use situations in design to deal with uncertainties and complexity in design processes.

Keywords

Agriculture Farming systems design Innovative design Sustainability Design studies Design theory 

Notes

Acknowledgements

We thank our two research divisions at INRA (French National Institute for Agricultural Research) for their support to the research on design in agriculture: the Science for Action and Development (SAD) division and the Environment and Agronomy (EA) division. This work was realized on the initiative of the newly born INRA institute for design in agrifood systems. We thank Liz Libbrecht for language editing the English version of this paper and are deeply grateful to the three anonymous reviewers for their comments that were of great help for improving this article.

References

  1. Altieri MA (1989) Agroecology: a new research and development paradigm for world agriculture. Agric Ecosyst Environ 27:37–46. doi: 10.1016/0167-8809(89)90070-4 CrossRefGoogle Scholar
  2. Altieri MA, Funes-Monzote FR, Petersen P (2011) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 31:1–13. doi: 10.1007/s13593-011-0065-6 CrossRefGoogle Scholar
  3. Ameri F, Summers JD, Mocko GM, Porter M (2008) Engineering design complexity: an investigation of methods and measures. Res Eng Des 19:161–179CrossRefGoogle Scholar
  4. Béguin P, Cerf M, Prost L (2012) Co-design as an emerging distributed dialogical process between users and designers. In: Barbier M, Elzen B (ed) System innovations, knowledge regimes, and design practices towards transitions for sustainable agriculture, INRA editions, pp 154–170. http://www4.inra.fr/sad_eng/Publications2/Free-e-books/System-Innovations-for-Sustainable-Agriculture
  5. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188CrossRefGoogle Scholar
  6. Bergez JE, Colbach N, Crespo O, Garcia F, Jeuffroy MH, Justes E, Loyce C, Munier-Jolain N, Sadok W (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9CrossRefGoogle Scholar
  7. Berthet ETA (2014) Concevoir l’écosystème, un nouveau défi pour l’agriculture (Designing the ecosystem: a new challenge for agriculture). Presse des Mines, ParisGoogle Scholar
  8. Berthet ETA, Bretagnolle V, Segrestin B (2012) Analyzing the design process of farming practices ensuring little bustard conservation: lessons for collective landscape management. J Sustain Agric 36:319–336. doi: 10.1080/10440046.2011.627988 CrossRefGoogle Scholar
  9. Berthet ETA, Barnaud C, Girard N, Labatut J, Martin G (2015) How to foster agroecological innovations? A comparison of participatory design methods. J Environ Plan Manag. doi: 10.1080/09640568.2015.1009627 Google Scholar
  10. Bjögvinsson E, Ehn P, Hillgren P-A (2012) Design things and design thinking: contemporary participatory design challenges. Des Issues 28:101–116CrossRefGoogle Scholar
  11. Bos AP, Groot Koerkamp PWG, Gosselink JMJ, Bokma S (2009) Reflexive interactive design and its application in a project on sustainable dairy husbandry systems. Outlook Agric 38:137–145CrossRefGoogle Scholar
  12. Brancourt-Hulmel M, Doussinault G, Lecomte C, Bérard P, Le Buanec B, Trottet M (2003) Genetic Improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci 43:37. doi: 10.2135/cropsci2003.3700 CrossRefGoogle Scholar
  13. Brisson N, Gate P, Gouache D et al (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res 119:201–212CrossRefGoogle Scholar
  14. Brown I (2013) Entre firme et usagers: des biens génératifs d’usages. Théorie des biens comme espaces de conception. ENMP, ParisGoogle Scholar
  15. Cerf M, Meynard J-M (2006) Les outils de pilotage des cultures: diversité de leurs usages et enseignements pour leur conception. Nat Sci Soc 14:19–29CrossRefGoogle Scholar
  16. Cerf M, Jeuffroy M-H, Prost L, Meynard J-M (2012) Participatory design of agricultural decision support tools: taking account of the use situations. Agron Sustain Dev 32:899–910. doi: 10.1007/s13593-012-0091-z CrossRefGoogle Scholar
  17. Chantre E, Cardona A (2014) Trajectories of French field crop farmers moving toward sustainable farming practices: change, learning, and links with the advisory services. Agroecol Sustain Food Syst 38:573–602CrossRefGoogle Scholar
  18. Chantre E, Cerf M, Le Bail M (2015) Transitional pathways towards input reduction on French field crop farms. Int J Agric Sustain 13:69–86. doi: 10.1080/14735903.2014.945316 CrossRefGoogle Scholar
  19. Coquil X, Beguin P, Dedieu B (2014) Transition to self-sufficient mixed crop-dairy farming systems. Renew Agric Food Syst 29:195–205. doi: 10.1017/S1742170513000458 CrossRefGoogle Scholar
  20. Cox PG (1996) Some issues in the design of agricultural decision support systems. Agric Syst 52:355–381. doi: 10.1016/0308-521X(96)00063-7 CrossRefGoogle Scholar
  21. Crossland R, Dapti JHS, McMahon CA (2003) An object-oriented modeling framework for representing uncertainty in early variant design. Res Eng Des 14:173–183CrossRefGoogle Scholar
  22. Debaeke P, Munier-Jolain N, Bertrand M, Guichard L, Nolot J-M, Faloya V, Saulas P (2009) Iterative design and evaluation of rule-based cropping systems: methodology and case studies-a review. Agron Sustain Dev 29(1):73–86. doi: 10.1051/agro:2008050 CrossRefGoogle Scholar
  23. Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210CrossRefGoogle Scholar
  24. Étienne M (ed) (2014) Companion modelling. Springer, DordrechtGoogle Scholar
  25. Gauffreteau A, Charmet G, Jeuffroy M-H, Le Gouy J, Meynard J-M, Rolland B (2014) Variétés et itinéraires techniques du blé: une évolution vers la diversification. Agron Environ Soc 4:13–22Google Scholar
  26. Girard N (2015) Knowledge at the boundary between science and society: a review of the use of farmers’ knowledge in agricultural development. J Knowl Manag 19(5):949–967MathSciNetCrossRefGoogle Scholar
  27. Gisclard M, Chantre É, Cerf M, Guichard L (2015) Co-click’eau: une démarche d’intermédiation pour la construction d’une action collective locale? Nat Sci Soc 23:3–13CrossRefGoogle Scholar
  28. Hatchuel A, Weil B et al (2003) A new approach of innovative design: an introduction to CK theory. In: DS 31: Proceedings of ICED 03, the 14th international conference on engineering design, StockholmGoogle Scholar
  29. Hatchuel A, Weil B, Le Masson P (2013) Towards an ontology of design: lessons from C–K design theory and forcing. Res Eng Des 24:147–163CrossRefGoogle Scholar
  30. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12. doi: 10.2135/cropsci2008.08.0512 CrossRefGoogle Scholar
  31. Kroll E, Le Masson P, Weil B (2014) Steepest-first exploration with learning-based path evaluation: uncovering the design strategy of parameter analysis with C–K theory. Res Eng Des 25:351–373. doi: 10.1007/s00163-014-0182-8 CrossRefGoogle Scholar
  32. Labatut J, Aggeri F, Girard N (2012) Discipline and change: how technologies and organizational routines interact in new practice creation. Organ Stud 33:39–69. doi: 10.1177/0170840611430589 CrossRefGoogle Scholar
  33. Le Bail M, Jeuffroy MH, Bouchard C, Barbottin A (2005) Is it possible to forecast the grain quality and yield of different varieties of winter wheat from Minolta SPAD meter measurements? Eur J Agron 23:379–391. doi: 10.1016/j.eja.2005.02.003 CrossRefGoogle Scholar
  34. Le Gal P-Y, Dugué P, Faure G, Novak S (2011) How does research address the design of innovative agricultural production systems at the farm level? A review. Agric Syst 104:714–728CrossRefGoogle Scholar
  35. Le Masson P, Weil B (2013) Design theories as languages of the unknown: insights from the German roots of systematic design (1840–1960). Res Eng Des 24:105–126CrossRefGoogle Scholar
  36. Le Masson P, Weil B, Hatchuel A (2010) Strategic management of design and innovation. Cambridge University Press, CambridgeGoogle Scholar
  37. Le Masson P, Weil B, Hatchuel A, Cogez P (2012) Why aren’t they locked in waiting games? Unlocking rules and the ecology of concepts in the semiconductor industry. Technol Anal Strateg 24(6):617–630CrossRefGoogle Scholar
  38. Le Masson P, Dorst K, Subrahmanian E (2013) Design theory: history, state of the art and advancements. Res Eng Des 24:97–103CrossRefGoogle Scholar
  39. Lecomte C, Prost L, Cerf M, Meynard J-M (2010) Basis for designing a tool to evaluate new cultivars. Agron Sustain Dev 30:667–677. doi: 10.1051/agro/2009042 CrossRefGoogle Scholar
  40. Li FY, Johnstone PR, Pearson A, Fletcher A, Jamieson PD, Brown HE, Zyskowski RF (2009) AmaizeN: a decision support system for optimizing nitrogen management of maize. NJAS Wagening J Life Sci 57:93–100. doi: 10.1016/j.njas.2009.07.007 CrossRefGoogle Scholar
  41. Lô-Pelzer E, Bousset L, Jeuffroy MH et al (2010) SIPPOM-WOSR: a Simulator for integrated pathogen population management of phoma stem canker on winter oilseed rape: I. Description of the model. Field Crops Res 118:73–81. doi: 10.1016/j.fcr.2010.04.007 CrossRefGoogle Scholar
  42. Love T (2002) Constructing a coherent cross-disciplinary body of theory about designing and designs: some philosophical issues. Des Stud 23:345–361CrossRefGoogle Scholar
  43. Loyce C, Meynard JM, Bouchard C, Rolland B, Lonnet P, Bataillon P, Bernicot MH, Bonnefoy M, Charrier X, Debote B et al (2012) Growing winter wheat cultivars under different management intensities in France: a multicriteria assessment based on economic, energetic and environmental indicators. Field Crops Res 125:167–178. doi: 10.1016/j.fcr.2011.08.007 CrossRefGoogle Scholar
  44. Malézieux E (2012) Designing cropping systems from nature. Agron Sustain Dev 32:15–29CrossRefGoogle Scholar
  45. Margolin V (1995) The politics of the artificial. Leonardo, New York, pp 349–356Google Scholar
  46. McCown RL (2002) Changing systems for supporting farmers’ decisions: problems, paradigms, and prospects. Agric Syst 74:179–220. doi: 10.1016/S0308-521X(02)00026-4 CrossRefGoogle Scholar
  47. Taylor PD, Fahrig L, Henein K, Merriam, G (1993) Connectivity is a vital element of landscape structure. Oikos 68(3):571–573CrossRefGoogle Scholar
  48. Meynard J-M, Dedieu B, Bos B (2012) Re-design and co-design of farming systems. An overview of methods and practices. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: The new dynamic. Springer, Berlin, pp 405–429CrossRefGoogle Scholar
  49. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, WashingtonGoogle Scholar
  50. Nassauer JI, Opdam P (2008) Design in science: extending the landscape ecology paradigm. Landsc Ecol 23:633–644CrossRefGoogle Scholar
  51. Prost L, Jeuffroy M-H (2007) Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agron Sustain Dev 27:321–330. doi: 10.1051/agro:2007032 CrossRefGoogle Scholar
  52. Prost L, Makowski D, Jeuffroy M-H (2008) Comparison of stepwise selection and Bayesian model averaging for yield gap analysis. Ecol Model 219:66–76. doi: 10.1016/j.ecolmodel.2008.07.026 CrossRefGoogle Scholar
  53. Prost L, Cerf M, Jeuffroy M-H (2012) Lack of consideration for end-users during the design of agronomic models. A review. Agron Sustain Dev 32:581–594. doi: 10.1007/s13593-011-0059-4 CrossRefGoogle Scholar
  54. Ravier C, Prost L, Jeuffroy M-H, Wezel A, Paravano L, Reau R (2015) Multi-criteria and multi-stakeholder assessment of cropping systems for a result-oriented water quality preservation action programme. Land Use Policy 42:131–140. doi: 10.1016/j.landusepol.2014.07.006 CrossRefGoogle Scholar
  55. Reau R, Monnot L-A, Schaub A, Munier-Jolain N, Pambou I, Bockstaller C, Cariolle M, Chabert A, Dumans P (2012) Les ateliers de conception de systèmes de culture pour construire, évaluer et identifier des prototypes prometteurs. Innov Agron 20:5–33Google Scholar
  56. Reich Y, Hatchuel A, Shai O, Subrahmanian E (2012) A theoretical analysis of creativity methods in engineering design: casting and improving ASIT within C–K theory. J Eng Des 23:137–158. doi: 10.1080/09544828.2010.493505 CrossRefGoogle Scholar
  57. Roberts J (2013) Organizational ignorance: towards a managerial perspective on the unknown. Manag Learn 44:215–236. doi: 10.1177/1350507612443208 CrossRefGoogle Scholar
  58. Robertson T, Simonsen J (2012) Challenges and opportunities in contemporary participatory design. Des Issues 28:3–9CrossRefGoogle Scholar
  59. Ruet F (2004) De la vache machine en élevage laitier. Quaderni 56:59–69CrossRefGoogle Scholar
  60. Rusch A, Valantin-Morison M, Sarthou J-P et al (2010) Biological control of insect pests in agroecosystems: effects of crop management, farming systems, and seminatural habitats at the landscape scale: a review. Adv Agron 109:219CrossRefGoogle Scholar
  61. Rusch A, Valantin-Morison M, Sarthou J-P, Roger-Estrade J (2011) Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc Ecol 26:473–486. doi: 10.1007/s10980-011-9573-7 CrossRefGoogle Scholar
  62. Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of “ecoagriculture”landscapes. Philos Trans R Soc B Biol Sci 363:477–494CrossRefGoogle Scholar
  63. Segrestin B (2006) Innovation et coopération interentreprises: Comment gérer les partenariats d’exploration? CNRSGoogle Scholar
  64. Shai O, Reich Y, Hatchuel A, Subrahmanian E (2013) Creativity and scientific discovery with infused design and its analysis with C–K theory. Res Eng Des 24:201–214CrossRefGoogle Scholar
  65. Simon H (1969) The sciences of the artificial. MIT Press, CambridgeGoogle Scholar
  66. Soulignac V, Ermine J-L, Paris J-L, Devise O, Chanet J-P (2012) A knowledge management system for exchanging and creating knowledge in organic farming. EJKM Electron J Knowl Manag 10:163Google Scholar
  67. Stockle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. doi: 10.1016/S1161-0301(02)00109-0 CrossRefGoogle Scholar
  68. Suh NP (1990) The principles of design. Oxford University Press, New YorkGoogle Scholar
  69. Suh NP (1999) A theory of complexity, periodicity and the design axioms. Res Eng Des 11:116–132CrossRefGoogle Scholar
  70. Toffolini Q, Jeuffroy M-H, Prost L (2016) Indicators used by farmers to design agricultural systems: a survey. Agron Sustain Dev 36:1–14CrossRefGoogle Scholar
  71. Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Dev Crop Sci 25:293–308CrossRefGoogle Scholar
  72. Walker DH, Thorne PJ, Sinclair FL, Thapa B, Wood CD, Subba DB (1999) A systems approach to comparing indigenous and scientific knowledge: consistency and discriminatory power of indigenous and laboratory assessment of the nutritive value of tree fodder. Agric Syst 62:87–103CrossRefGoogle Scholar
  73. Williams BK (2011) Adaptive management of natural resources—framework and issues. J Environ Manag 92:1346–1353. doi: 10.1016/j.jenvman.2010.10.041 CrossRefGoogle Scholar
  74. Wolfe MS, Baresel JP, Desclaux D, Goldringer I, Hoad S, Kovacs G, Löschenberger F, Miedaner T, Østergård H, van Bueren ETL (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323–346. doi: 10.1007/s10681-008-9690-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.UMR LISISINRA, CNRS, ESIEE Paris, UPEM, Université Paris-EstMarne-La-ValléeFrance
  2. 2.UMR SADAPTINRA, AgroParisTech, Université Paris-SaclayThiverval-GrignonFrance
  3. 3.UMR Agronomie INRA, AgroParisTech, Université Paris-SaclayThiverval-GrignonFrance
  4. 4.UMR AGIRINRA, Université de Toulouse, INPT ENSATCastanet-TolosanFrance
  5. 5.MINES ParisTech, Centre de Gestion ScientifiquePSL Research UniversityParisFrance
  6. 6.Department of Natural Resource SciencesMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations