Research in Engineering Design

, Volume 27, Issue 2, pp 91–115 | Cite as

Design theory at Bauhaus: teaching “splitting” knowledge

  • Pascal Le MassonEmail author
  • Armand Hatchuel
  • Benoit Weil
Original Paper


Recent advances in design theory help clarify the logic, forms and conditions of generativity. In particular, the formal model of forcing predicts that high-level generativity (so-called generic generativity) can only be reached if the knowledge structure meets the ‘splitting condition’. We test this hypothesis for the case of Bauhaus (1919–1933), where we can expect strong generativity and where we have access to the structures of knowledge provided by teaching. We analyse teaching at Bauhaus by focusing on the courses of Itten and Klee. We show that these courses aimed to increase students’ creative design capabilities by providing the students with methods of building a knowledge base with two critical features: (1) a knowledge structure that is characterized by non-determinism and non-modularity and (2) a design process that helps students progressively ‘superimpose’ languages on the object. From the results of the study, we confirm the hypothesis deduced from design theory; we reveal unexpected conditions on the knowledge structure required for generativity and show that the structure is different from the knowledge structure and design process of engineering systematic design and show that the conditions required for generativity, which can appear as a limit on generativity, can also be positively interpreted. The example of Bauhaus shows that enabling a splitting condition is a powerful way to increase designers’ generativity.


Generativity Design theory Splitting condition Bauhaus Industrial design 


  1. Bense M (1956) Aesthetica II. Agis, Baden-BadenGoogle Scholar
  2. Betts P (1998) Science, semiotics and society: the Ulm Hochschule für Gestaltung in retrospect. Des Issues 14(2):67MathSciNetCrossRefGoogle Scholar
  3. Blossfeldt K, Nierendorf K (1928) Urformen der Kunst: photographische Pflanzenbilder. Verlag Ernst Wasmuth, A.G., BerlinGoogle Scholar
  4. Boden MA (1999) Computer models of creativity. In: Sternberg RJ (ed) Handbook of creativity. Cambridge University Press, Cambridge, pp 351–372Google Scholar
  5. Braha D, Reich Y (2003) Topologial structures for modelling engineering design processes. Res Eng Des 14(4):185–199CrossRefGoogle Scholar
  6. Brun J, Le Masson P, Weil B (2015) Analyzing the generative effects of sketches with design theory: sketching to foster knowledge reordering. In: International conference on engineering design, Milan, 2015. p Reviewers’favorite award ICED’15Google Scholar
  7. Campbell J (1978) The German Werkbund. The politics of reform in the applied arts. Princeton University Press, PrincetonGoogle Scholar
  8. Chow TY (2009) A beginner's guide to forcing. In: Chow TY, Isaksen DC (eds) Communicating mathematics–a conference in honor of Joseph A. Gallian’s 65th Birthday. American Mathematical Society, Providence, pp 25–40Google Scholar
  9. Cohen PJ (1966) Set theory and the continuum hypothesis. Addison-Wesley, Menlo ParkzbMATHGoogle Scholar
  10. Cohen P (2002) The discovery of forcing. Rocky Mt J Math 32(4):1071–1100MathSciNetCrossRefzbMATHGoogle Scholar
  11. Dehornoy P (2010) Théorie axiomatique des ensembles. In: Encyclopeadia Universalis. Paris, p 20Google Scholar
  12. Dickman B (2013) Mathematical creativity, Cohen forcing, and evolving systems: elements for a case study on Paul Cohen. J Math Educ Teach Coll 4(2):50–59Google Scholar
  13. Dorst K, Vermaas PE (2005) John Gero’s function-behaviour-structure model of designing: a critical analysis. Res Eng Des 16(1–2):17–26CrossRefGoogle Scholar
  14. Dow AW (1920) Composition: a series of exercises in art structure for the use of students and teachers. DOubleday, Page & Company, Garden CityGoogle Scholar
  15. Droste M (2002) Bauhaus 1919–1933. Taschen, KölnGoogle Scholar
  16. Engler F, Lichtenstein C (1990) Streamlined, a metaphor for progress, the esthetics of minimized drag. Lars Müller Publisherse, BadenGoogle Scholar
  17. Findeneisen F (1950) Neuzeitliche Maschinenelemente. Schweizer Druck-und Verlaghaus AG, ZürichGoogle Scholar
  18. Forty A (1986) Objects of desire. 2ème édition, première édition en 1986 edn. Thames & Hudson, LondonGoogle Scholar
  19. Friedewald B (2011) Paul Klee, life and work. Prestel, MunichGoogle Scholar
  20. Froissart-Pezone R (2004) L’Ecole à la recherche d’une identité entre art et industrie (1877–1914). In: Raynaud P (ed) Histoire de l’Ecole nationale supérieure des arts décoratfs 1ère partie (1766–1941). Edition spéciale du Journal de l’Ensad, Paris, pp 108–147Google Scholar
  21. Gardner H (1936) Art through the ages—an introduction to its history and significance, 2nd edn. Harcourt, Brace and Company, New YorkGoogle Scholar
  22. Gropius W (1923) The theory and organization of the BauhausGoogle Scholar
  23. Gropius W (1925) Neue BauhauswerkstättenGoogle Scholar
  24. Guilford JP (1950) Creativity. Am Psychol 3:444–454CrossRefGoogle Scholar
  25. Hadamard J (1945) The psychology of invention in the mathematical field. Princeton University Press, New York, p 145zbMATHGoogle Scholar
  26. Hatchuel A, Weil B (2009) C–K design theory: an advanced formulation. Res Eng Des 19(4):181–192CrossRefGoogle Scholar
  27. Hatchuel A, Le Masson P, Reich Y, Weil B (2011) A systematic approach of design theories using generativeness and robustness. In: International conference on engineering design, ICED’11, Copenhagen, Technical University of Denmark, 2011, p 12Google Scholar
  28. Hatchuel A, Weil B, Le Masson P (2013) Towards an ontology of design: lessons from C–K design theory and forcing. Res Eng Des 24(2):147–163CrossRefGoogle Scholar
  29. Heymann M (2005) “Kunst” und Wissenchsaft in der Technik des 20. Jahrhunderts. Zur Geschichte der Konstruktionswissenschaft. Chronos Verlag, ZürichGoogle Scholar
  30. Hubka V, Eder WE (1988) Theory of technical systems. A total concept theory for engineering design. Springer, BerlinCrossRefGoogle Scholar
  31. Itten J (1961) The art of color. Wiley, New YorkGoogle Scholar
  32. Itten J (1975) Design and form, the basic course at the Bauhaus and later. Revised edition (first edition 1963) edn. Wiley, LondonGoogle Scholar
  33. Jaffee B (2005) Before the new Bauhaus: from industrial drawing to art and design education in Chicago. Des Issues 21(1):41–62CrossRefGoogle Scholar
  34. Jansson DG, Smith SM (1991) Design fixation. Des Stud 12(1):3–11CrossRefGoogle Scholar
  35. Jech T (2002) Set theory. Springer monographs in mathematics, 3rd millennium edition, revised and expanded edn. Springer, BerlinGoogle Scholar
  36. Kanamori A (2008) Cohen and Set Theory. Bull Symb Log 14(3):351–378Google Scholar
  37. Kandinsky W (1975) Cours du Bauhaus (1929). Traduit de l’allemand d’après des notes manuscrites par Suzanne et Jean Leppien edn. Denoël, ParisGoogle Scholar
  38. Keane W (2003) Semiotics and the social analysis of material things. Lang Commun 23:409–425CrossRefGoogle Scholar
  39. Kesselring F (1942) Die “starke” Konstruktion, Gedanken zu einer Gestaltungslehre. Zeitschrift des Vereines deutscher Ingenieure 86 (21/22 30. Mai 1942 und 49/50 12. Dez. 1942): pp 321–330 und 749–752Google Scholar
  40. Klee P (1922) Beiträge zur bildnerischen Formlehre (‘contribution to a pictorial theory of form’, part of Klee 1921–1922 lectures at the Bauhaus). WeimarGoogle Scholar
  41. Klee P (1966) On modern art. Faber and Faber Limited, LondonGoogle Scholar
  42. Klee P (2005) Cours du Bauhaus, Weimar 1921–1922. Contributions à la théorie de la forme picturale. Hazan, ParisGoogle Scholar
  43. König W (1999) Künstler und Strichezieher. Konstruktions-und Technikkulturen im deutschen, britischen, amerikanischen und französischen Maschinenbau zwischen 1850 und 1930, vol 1287. Suhrkamp Taschenbuch Wissenschaft. Suhrkamp Verlag, Frankfurt am MainGoogle Scholar
  44. Krippendorff K (1989) On the essential contexts of artifacts or on the proposition that “design is making sense (of things)”. Des Issues 5(2):9–39CrossRefGoogle Scholar
  45. Kroll E (2013) Design theory and conceptual design: contrasting functional decomposition and morphology with parameter analysis. Res Eng Des 24(2):165–183CrossRefGoogle Scholar
  46. Kroll E, Le Masson P, Weil B (2014) Steepest-first exploration with learning-based path evaluation: uncovering the design strategy of parameter analysis with C–K theory. Res Eng Des 25:351–373CrossRefGoogle Scholar
  47. Laudien K (1931) Maschinenelemente. Dr. Max Junecke Verlagsbuchhandlung, LeipzigGoogle Scholar
  48. Le Masson P, Weil B (2013) Design theories as languages for the unknown: insights from the German roots of systematic design (1840–1960). Res Eng Des 24(2):105–126CrossRefGoogle Scholar
  49. Le Masson P, Hatchuel A, Weil B (2011) The interplay between creativity issues and design theories: a new perspective for design management studies? Creat Innov Manag 20(4):217–237CrossRefGoogle Scholar
  50. Le Masson P, Dorst K, Subrahmanian E (2013) Design theory: history, state of the arts and advancements. Res Eng Des 24(2):97–103CrossRefGoogle Scholar
  51. Lenfle S, Le Masson P, Weil B (2015) When project management meets design theory: revisiting the Manhattan and Polaris projects to characterize “radical innovation” and its managerial implications. Creativity Innov Manag (accepted)Google Scholar
  52. Leniaud J-M (1994) Viollet-le-Duc ou les délires du système. Menges, ParisGoogle Scholar
  53. Lindemann U (2010) Systematic procedures supporting creativity—a contradiction? In: Taura T, Nagai Y (eds) Design creativity. Springer, London, pp 23–28Google Scholar
  54. Maldonado T (1960) New developments in industry and the training of designers. Archit Yearb 9:174–180Google Scholar
  55. Meurer M (1896) Die Ursprungsformen des griechischen Akanthusornamentes und ihre natürlichen Vorbilder. G. Reimer, BerlinCrossRefGoogle Scholar
  56. Moholy-Nagy (1938) The new vision: fundamentals of bauhaus design, painting, sculpture, and architecture. Norton, New YorkGoogle Scholar
  57. Moore GH (1988) The origins of forcing (Logic colloquium '86). In: Drake FR, Truss JK (eds) Studies in logic and the foundations of mathematics. North-Holland, Amsterdam, pp 143–173Google Scholar
  58. Pahl G, Beitz W, Feldhusen J, Grote K-H (2007) Engineering design, a systematic approach (trans: Wallace K, Blessing L, Bauert F). Third English edition edn. Springer, LondonGoogle Scholar
  59. Poincaré H (1908) La création mathématique. Bulletin de l’Institut Général de Psychologie 8(3)Google Scholar
  60. Raynaud P (ed) (2004) Histoire de l’Ecole nationale supérieure des arts décoratfs 1ère partie (1766–1941). Edition spéciale du Journal de l’EnsadGoogle Scholar
  61. Read H (1959) A concise history of modern painting. Praeger, LondonGoogle Scholar
  62. Redtenbacher F (1852) Prinzipien der Mechanik und des Maschinenbaus. Bassermann, MannheimGoogle Scholar
  63. Reich Y (1995) A critical review of general design theory. Res Eng Des 7:1–18CrossRefGoogle Scholar
  64. Reuleaux F (1877) Briefe aus Philadelphia. Druck und Verlag von Friedrich Vieweg und Sohn, BraunschweigGoogle Scholar
  65. Reuleaux F, Moll CL (1862) Constructionslehre für den Maschinenbau, erster Band : die Construction der Maschinentheile. Fridriech Vieweh und Sohn, BraunschweigGoogle Scholar
  66. Rhodes M (1961) An analysis of creativity. The Phi Delta Kappan 42(7):305–310Google Scholar
  67. Riccini R (1998) History from things: Notes on the history of industrial design. Des Issues 14(3):43CrossRefGoogle Scholar
  68. Rice P (1994) An engineer imagines. Artemis, LondonGoogle Scholar
  69. Rodenacker WG (1970) Methodisches Konstruieren. Konstruktionsbücher. Springer, BerlinCrossRefGoogle Scholar
  70. Ross DW (1907) A theory of pure design: harmony, balance, rhythm. Houghton, Mifflin and Company, BostonGoogle Scholar
  71. Rötscher F (1927) Die Maschinenelemente. Verlag von Julius Springer, BerlinGoogle Scholar
  72. Schwartz FJ (1996) The Werkbund, design theory and mass culture before the first world war. Yale University Press, New HavenGoogle Scholar
  73. Shai O, Reich Y (2004a) Infused design: I theory. Res Eng Des 15(2):93–107Google Scholar
  74. Shai O, Reich Y (2004b) Infused design: II Practice. Res Eng Des 15(2):108–121Google Scholar
  75. Shai O, Reich Y, Hatchuel A, Subrahmanian E (2013) Creativity and scientific discovery with infused design and its analysis with C–K theory. Res Eng Des 24(2):201–214CrossRefGoogle Scholar
  76. Stoots J (2011) Karl Blossfeldt, indisputably modern. In: Rooco V (ed) European photo avant-garde, 1920s–1930sGoogle Scholar
  77. Taura T, Nagai Y (2012) Concept generation for design creativity: a systematized theory and methodology. Springer, LondonGoogle Scholar
  78. Taura T, Nagai Y (2013) A systematized theory of creative concept generation in design: first-order and high-order concept generation. Res Eng Des 24(2):185–199CrossRefGoogle Scholar
  79. Tomiyama T, Yoshikawa H (1986) Extended general design theory, vol CS-R8604. Centre for mathematics and Computer Science, AmsterdamGoogle Scholar
  80. Vitruvius (1999) Ten books on architecture. Cambridge University Press, CambridgeGoogle Scholar
  81. von Bach C (1896) Die Maschinen-Elemente, ihre Berechnung und Konstruktion: Mit Rücksicht auf die neueren Versuche 5. vermehrte Auflage edn. Verlag der J. G. Cotta’schen Buchhandlung, StuttgartGoogle Scholar
  82. von Bach (1924) Die Maschinen-Elemente, ihre Berechnung und Konstruktion : Mit Rücks. auf d. neueren Versuche 12. verm. Aufl. edn. Kröner, LeipzigGoogle Scholar
  83. Wallas G (1926) The Art of Thought. Harcourt Brace, New YorkGoogle Scholar
  84. Weisberg RW (1992) Creativity Beyond The Myth of Genius. W. H. Freeman Company, New YorkGoogle Scholar
  85. Whitford F (1984) Bauhaus. World of art. Thames & Hudson, LondonGoogle Scholar
  86. Wick RK (2000) Teaching at the BAuhaus. Hatje CantzGoogle Scholar
  87. Yoshikawa H (1981) General design theory and a CAD system. In: Sata T, Warman E (eds) Man-Machine Communication in CAD/CAM, proceedings of the IFIP WG5.2-5.3 Working Conference 1980 (Tokyo). Amsterdam, North-Holland, pp 35–57Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Pascal Le Masson
    • 1
    Email author
  • Armand Hatchuel
    • 1
  • Benoit Weil
    • 1
  1. 1.CGS – i3 UMR CNRS 9217MINES Paristech – PSL Research UniversityParisFrance

Personalised recommendations