Research in Engineering Design

, Volume 26, Issue 1, pp 3–35 | Cite as

FBS Linkage ontology and technique to support engineering change management

  • Bahram Hamraz
  • Nicholas H. M. Caldwell
  • Tom W. Ridgman
  • P. John Clarkson
Original Paper

Abstract

Engineering changes are essential for any product development, and their management has become a crucial discipline. Research in engineering change management has brought about some methods and tools to support dealing with changes. This work extends the change prediction method through incorporation of a function–behaviour–structure (FBS) scheme. These additional levels of detail provide the rationales for change propagation and allow a more proactive management of changes. First, we develop the ontology of this method based on a comprehensive comparison of three seminal functional reasoning schemes. Then, we demonstrate the FBS Linkage technique by applying it to a diesel engine. Finally, we evaluate the method.

Keywords

Engineering change management Change prediction Functional reasoning Multi-domain model 

Abbreviations

CAM

The Cambridge Advanced Modeller

CPM

The change prediction method

DMM

Domain mapping matrix

DRM

The design research methodology

DSM

Design structure matrix

EC

Engineering change

FBS

Function–behaviour–structure

FBSta

The function–behaviour–state framework

FBStr

The function–behaviour–structure framework

FR

Functional reasoning

MDM

Multidomain matrix

SBF

The structure–behaviour–function framework

SEM

Scanning electron microscope

References

  1. Ahmad N, Wynn DC, Clarkson PJ (2011b) The evolution of information while building cross-domain models of a design: a video experiment. Paper presented at the international conference on engineering design (ICED’11), Copenhagen, DenmarkGoogle Scholar
  2. Ahmed S, Kanike Y (2007) Engineering change during a product’s lifecycle. Paper presented at the international conference on engineering design (ICED’07), Paris, FranceGoogle Scholar
  3. Albers A, Braun A, Sadowski E, Wynn DC, Wyatt DF, Clarkson PJ (2011) System architecture modeling in a software tool based on the contact and channel approach (C&C-A). J Mech Des 133(10):101006–101008. doi:10.1115/1.4004971 CrossRefGoogle Scholar
  4. Altshuller G (1984) Creativity as an exact science. Gordon and Breach Science, New YorkGoogle Scholar
  5. Blessing LTM, Chakrabarti A (2009) DRM, a design research methodology. Springer, LondonCrossRefGoogle Scholar
  6. Boerstring P, Keller R, Alink T, Eckert CM, Clarkson PJ (2008) The relationship between functions and requirements for an improved detection of component linkages. Paper presented at the international design conference (DESIGN’08), Dubrovnik, CroatiaGoogle Scholar
  7. Chandrasekaran B (2005) Representing function: Relating functional representation and functional modeling research streams. Artif Intell Eng Des Anal Manuf (AIEDAM) 19(2):65–74MathSciNetGoogle Scholar
  8. Clarkson PJ, Hamilton JR (2000) ‘Signposting’, a parameter-driven task-based model of the design process. Res Eng Des 12(1):18–38CrossRefGoogle Scholar
  9. Clarkson PJ, Simons C, Eckert CM (2001b) Change prediction for product redesign. Paper presented at the international conference on engineering design (ICED’01), Glasgow, UKGoogle Scholar
  10. Clarkson PJ, Simons C, Eckert CM (2004) Predicting change propagation in complex design. J Mech Des 126(5):788–797CrossRefGoogle Scholar
  11. Cohen T, Fulton RE (1998) A data approach to tracking and evaluating engineering changes. Paper presented at the ASME design engineering technical conference (DETC’98), Atlanta, GA, USAGoogle Scholar
  12. Cohen T, Navathe SB, Fulton RE (2000) C-FAR, change favorable representation. CAD Comput Aided Des 32(5):321–338CrossRefGoogle Scholar
  13. Eckert CM, Clarkson PJ, Zanker W (2004) Change and customisation in complex engineering domains. Res Eng Des 15(1):1–21CrossRefGoogle Scholar
  14. Eckert C, Alink T, Ruckpaul A, Albers A (2011) Different notions of function: results from an experiment on the analysis of an existing product. J Eng Des 22(11–12):811–837. doi:10.1080/09544828.2011.603297 CrossRefGoogle Scholar
  15. Erden MS, Komoto H, van Beek TJ, D’Amelio V, Echavarria E, Tomiyama T (2008) A review of function modeling: approaches and applications. Artif Intell Eng Des Anal Manuf (AIEDAM) 22(2):147–169. doi:10.1017/S0890060408000103 Google Scholar
  16. Far BH, Elamy AH (2005) Functional reasoning theories: problems and perspectives. Artif Intell Eng Des Anal Manuf (AIEDAM) 19(2):75–88. doi:10.1017/s0890060405050080 Google Scholar
  17. Fei G, Gao J, Owodunni D, Tang X (2011a) A model-driven and knowledge-based methodology for engineering design change management. Comput Aided Des Appl 8(3):373–382Google Scholar
  18. Fei G, Gao J, Owodunni OO, Tang X (2011b) A method for engineering design change analysis using system modelling and knowledge management techniques. Int J Comput Integr Manuf 24(6):535–551. doi:10.1080/0951192x.2011.562544 CrossRefGoogle Scholar
  19. Fricke E, Gebhard B, Negele H, Igenbergs E (2000) Coping with changes: causes, findings, and strategies. Syst Eng 3(4):169–179CrossRefGoogle Scholar
  20. Gero JS (1990) Design prototypes: a knowledge representation schema for design. AI Mag 11(4):26–36Google Scholar
  21. Gero JS, Kannengiesser U (2004) The situated function–behaviour–structure framework. Des Stud 25(4):373–391CrossRefGoogle Scholar
  22. Gero JS, Kannengiesser U (2007) A function–behavior–structure ontology of processes. Artif Intell Eng Des Anal Manuf (AIEDAM) 21(4):379–391Google Scholar
  23. Gero JS, Tham KW, Lee HS (1992) Behaviour: a link between function and structure in design. In: Brown DC, Waldron MB, Yoshikawa H (eds) Intelligent computer aided design. Elsevier, Amsterdam, pp 193–225Google Scholar
  24. Giffin M, De Weck OL, Bounova G, Keller R, Eckert CM, Clarkson PJ (2009) Change propagation analysis in complex technical systems. J Mech Des 131(8):0810011–08100114CrossRefGoogle Scholar
  25. Goel AK, Bhatta S (2004) Use of design patterns in analogy-based design. Adv Eng Inf 18(2):85–94. doi:10.1016/j.aei.2004.09.003 CrossRefGoogle Scholar
  26. Goel AK, Chandrasekaran B (1989) Functional representation of designs and redesign problem solving. Paper presented at the international joint conference on artificial intelligence (IJCAI’89), Detroit, MI, USAGoogle Scholar
  27. Goel AK, Stroulia E (1996) Functional device models and model-based diagnosis in adaptive design. Artif Intell Eng Des Anal Manuf (AIEDAM) 10(4):355–370CrossRefGoogle Scholar
  28. Goel AK, Rugaber S, Vattam S (2009) Structure, behavior, and function of complex systems: the structure, behavior, and function modeling language. Artif Intell Eng Des Anal Manuf (AIEDAM) 23(1):23–35CrossRefGoogle Scholar
  29. Guenov MD, Barker SG (2005) Application of axiomatic design and design structure matrix to the decomposition of engineering systems. Syst Eng 8(1):29–40. doi:10.1002/sys.20015 CrossRefGoogle Scholar
  30. Hamraz B, Caldwell NHM, Clarkson PJ (2012a) FBS Linkage model—towards an integrated engineering change prediction and analysis method. Paper presented at the international design conference (DESIGN’10), Dubrovnik, CroatiaGoogle Scholar
  31. Hamraz B, Caldwell NHM, Clarkson PJ (2012b) A multi-domain engineering change propagation model to support uncertainty reduction and risk management in design. J Mech Des. doi:10.1115/1.4007397 Google Scholar
  32. Hamraz B, Caldwell NHM, John Clarkson P (2012c) A multidomain engineering change propagation model to support uncertainty reduction and risk management in design. J Mech Des 134(10):100905, 100901–100914. doi:10.1115/1.4007397
  33. Hamraz B, Caldwell NHM, Clarkson PJ (2013a) A holistic categorisation framework for literature on engineering change management. Syst Eng 16(4):473–505. doi:10.1002/sys.21244 CrossRefGoogle Scholar
  34. Hamraz B, Hisarciklilar O, Rahmani K, Wynn DC, Thomson V, Clarkson PJ (2013b) Change prediction using interface data. Concurr Eng 21(2):139–154CrossRefGoogle Scholar
  35. Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Des 13(2):65–82. doi:10.1007/s00163-001-0008-3 Google Scholar
  36. Hubka V, Eder WE (1996) Design science: introduction to the needs, scope and organization of engineering design knowledge. Springer, LondonCrossRefGoogle Scholar
  37. Hundal MS (1990) A systematic method for developing function structures, solutions and concept variants. Mech Mach Theory 25(3):243–256. doi:10.1016/0094-114x(90)90027-h CrossRefGoogle Scholar
  38. IEEE (2012) IEEE Std 1012-2012—standard for system and software verification and validation. Institute of Electrical and Electronics Engineers (IEEE), New York, NY, USAGoogle Scholar
  39. Janthong N (2011) A methodology for tracking the impact of changes in (re)designing of the industrial complex product. Paper presented at the IEEE international conference on industrial engineering and engineering management (IEEM’11), SingaporeGoogle Scholar
  40. Jarratt TAW, Eckert CM, Clarkson PJ (2004a) Development of a product model to support engineering change management. Paper presented at the fifth international symposium on tools and methods of competitive engineering (TMCE’04), Lausanne, SwitzerlandGoogle Scholar
  41. Jarratt TAW, Eckert CM, Clarkson PJ (2004b) The benefits of predicting change in complex products: application areas of a DSM-based prediction tool. Paper presented at the international design conference (DESIGN’04), Dubrovnik, CroatiaGoogle Scholar
  42. Jarratt TAW, Eckert CM, Caldwell NHM, Clarkson PJ (2011) Engineering change: an overview and perspective on the literature. Res Eng Des 22(2):103–124CrossRefGoogle Scholar
  43. Keller R (2007) Predicting change propagation: Algorithms, representations, software tools. Ph.D. thesis, University of Cambridge, Cambridge, UKGoogle Scholar
  44. Keller R, Eckert CM, Clarkson PJ (2009) Using an engineering change methodology to support conceptual design. J Eng Des 20(6):571–587. doi:10.1080/09544820802086988 CrossRefGoogle Scholar
  45. Koh ECY, Caldwell NHM, Clarkson PJ (2012) A method to assess the effects of engineering change propagation. Res Eng Des 23(4):329–351. doi:10.1007/s00163-012-0131-3 CrossRefGoogle Scholar
  46. Lindemann U, Maurer M (2007) Facing multi-domain complexity in product development. In: Krause F-L (ed) The future of product development. Springer, Berlin, pp 351–361. doi:10.1007/978-3-540-69820-3_35 CrossRefGoogle Scholar
  47. Lindemann U, Maurer M, Braun T (2009) Structural complexity management. Springer, BerlinCrossRefGoogle Scholar
  48. Little A, Wood K, McAdams D (1997) Functional analysis: A fundamental empirical study for reverse engineering, benchmarking and redesign. Paper presented at the ASME design theory and methodology conference, Sacramento, CA, USAGoogle Scholar
  49. Maier AM, Langer S (2011) Engineering change management report 2011: survey results on causes and effects, current practice, problems, and strategies in Denmark. DTU Management Engineering, Department of Management Engineering, Technical University of Denmark, Copenhagen, DenmarkGoogle Scholar
  50. Malmqvist J, Axelsson R, Johansson M (1996) A comparative analysis of the theory of inventive problem solving and the systematic approach of Pahl and Beitz. Paper presented at the ASME design engineering technical conferences (DETC’96), Irvine, CA, USAGoogle Scholar
  51. Maurer M (2007) Structural awareness in complex product design. Ph.D. Technology University of Munich, Munich, GermanyGoogle Scholar
  52. McMahon CA (1994) Observations on modes of incremental change in design. J Eng Des 5(3):195–209CrossRefGoogle Scholar
  53. Ollinger GA, Stahovich TF (2001) RedesignIT—a constraint-based tool for managing design changes. Paper presented at the ASME design engineering technical conference (DETC’01), Pittsburgh, PA, USAGoogle Scholar
  54. Ollinger GA, Stahovich TF (2004) RedesignIT—a model-based tool for managing design changes. J Mech Des 126(2):208–216CrossRefGoogle Scholar
  55. Pahl G, Beitz W, Feldhusen JA, Grote K-H (2007) Engineering design: a systematic approach, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  56. Pasqual MC, de Weck OL (2011) Multilayer network model for analysis and management of change propagation. Paper presented at the international conference on engineering design (ICED’11), Copenhagen, DenmarkGoogle Scholar
  57. Qian L, Gero JS (1996) Function–behavior–structure paths and their role in analogy-based design. Artif Intell Eng Des Anal Manuf (AIEDAM) 10(4):289–312CrossRefGoogle Scholar
  58. Rahmani K, Thomson V (2011) Managing subsystem interfaces of complex products. Int J Prod Lifecycle Manag 5(1):73–83. doi:10.1504/ijplm.2011.038103 CrossRefGoogle Scholar
  59. Rahmani K, Thomson V (2012) Ontology based interface design and control methodology for collaborative product development. Comput Aided Des Appl 44(5):432–444. doi:10.1016/j.cad.2011.12.002 CrossRefGoogle Scholar
  60. Rodenacker WG (1971) Methodisches Konstruieren: Grundlagen, Methodik, Praktische Beispiele (German). 1, (4th ed: 1991) edn. Springer, Berlin, GermanyGoogle Scholar
  61. Rosenman MA, Gero JS (1998) Purpose and function in design: from the socio-cultural to the techno-physical. Des Stud 19(2):161–186CrossRefGoogle Scholar
  62. Sembugamoorthy V, Chandrasekaran B (1986) Functional representation of devices and compilation of diagnostic problem solving systems. In: Kolodner JL, Riesbeck CK (eds) Experience, memory, and reasoning. Lawrence Erlbaum Associates, Hillsdale, pp 47–73Google Scholar
  63. Simons CS (2000) Change propagation in product design: a change prediction method. M.Phil., University of Cambridge, CambridgeGoogle Scholar
  64. Stone RB, Wood KL (2000) Development of a functional basis for design. J Mech Des 122(4):359–370CrossRefGoogle Scholar
  65. Szykman S, Racz JW, Sriram RD (1999) The representation of function in computer-based design. Paper presented at the ASME design engineering technical conferences (DETC’99), Las Vegas, NV, USAGoogle Scholar
  66. Umeda Y, Tomiyama T (1997) Functional reasoning in design. IEEE Expert 12(2):42–48CrossRefGoogle Scholar
  67. Umeda Y, Takeda H, Tomiyama T, Yoshikawa H (1990) Function, behaviour, and structure. In: Gero JS (ed) Applications of artificial intelligence in engineering. Springer, Berlin, pp 177–193Google Scholar
  68. Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996) Supporting conceptual design based on the function–behavior–state modeler. Artif Intell Eng Des Anal Manuf (AIEDAM) 10(4):275–288CrossRefGoogle Scholar
  69. Van Beek TJ, Tomiyama T (2012) Structured workflow approach to support evolvability. Adv Eng Inf 26(3):487–501. doi:10.1016/j.aei.2012.05.003 CrossRefGoogle Scholar
  70. Van Beek TJ, Erden MS, Tomiyama T (2010) Modular design of mechatronic systems with function modeling. Mechatronics 20(8):850–863. doi:10.1016/j.mechatronics.2010.02.002 CrossRefGoogle Scholar
  71. Vermaas PE, Dorst K (2007) On the conceptual framework of John Gero’s FBS-model and the prescriptive aims of design methodology. Des Stud 28(2):133–157. doi:10.1016/j.destud.2006.11.001 CrossRefGoogle Scholar
  72. Wyatt DF, Wynn DC, Jarrett JP, Clarkson PJ (2012) Supporting product architecture design using computational design synthesis with network structure constraints. Res Eng Des 23(1):17–52CrossRefGoogle Scholar
  73. Wynn DC, Wyatt DF, Nair SMT, Clarkson PJ (2010) An introduction to the Cambridge Advanced Modeller. Paper presented at the 1st international conference on modelling and management of engineering processes (MMEP’10), Cambridge, UKGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Bahram Hamraz
    • 1
  • Nicholas H. M. Caldwell
    • 2
  • Tom W. Ridgman
    • 3
  • P. John Clarkson
    • 1
  1. 1.Department of Engineering, Engineering Design CentreUniversity of CambridgeCambridgeUK
  2. 2.Department of Science and TechnologyUniversity Campus SuffolkIpswichUK
  3. 3.Department of Engineering, Institute for ManufacturingUniversity of CambridgeCambridgeUK

Personalised recommendations