Advertisement

Research in Engineering Design

, Volume 24, Issue 3, pp 219–244 | Cite as

Change impact on a product and its redesign process: a tool for knowledge capture and reuse

  • Naveed Ahmad
  • David C. Wynn
  • P. John Clarkson
Original Paper

Abstract

Change propagates, potentially affecting many aspects of a design and requiring much rework to implement. This article introduces a cross-domain approach to decompose a design and identify possible change propagation linkages, complemented by an interactive tool that generates dynamic checklists to assess change impact. The approach considers the information domains of requirements, functions, components, and the detail design process. Laboratory experiments using a vacuum cleaner suggest that cross-domain modelling helps analyse a design to create and capture the information required for change prediction. Further experiments using an electronic product show that this information, coupled with the interactive tool, helps to quickly and consistently assess the impact of a proposed change.

Keywords

Change propagation Change impact assessment Cross-domain model Requirements Function structure Component structure Design process Cambridge Advanced Modeller (CAM) 

References

  1. Albers A, Braun A, Sadowski E, Wynn DC, Wyatt DF, Clarkson PJ (2011) System architecture modeling in a software tool based on the contact and channel approach (C&C-A). ASME J Mech Des 133(10):CID 101006. doi: 10.1115/1.4004971 CrossRefGoogle Scholar
  2. Andreasen MM (2011) 45 years with design methodology. J Eng Des 22(5):293–332. doi: 10.1080/09544828.2010.538040 MathSciNetCrossRefGoogle Scholar
  3. Ariyo OO, Eckert CM, Clarkson PJ (2009) Challenges in identifying the knock-on effects of engineering change. Int J Design Eng 2(4):414–431. doi: 10.1504/IJDE.2009.030821 CrossRefGoogle Scholar
  4. Cheng H, Chu X (2012) A network-based assessment approach for change impacts on complex product, J Intell Manuf 23(4):1419–1431. doi: 10.1007/s10845-010-0454-8 CrossRefGoogle Scholar
  5. Chua DKH, Hossain MA (2012) Predicting change propagation and impact on design schedule due to external changes. IEEE Trans Eng Manag 59(3):483–493. doi: 10.1109/TEM.2011.2164082 CrossRefGoogle Scholar
  6. Clarkson PJ, Simons CS, Eckert CM (2004) Predicting change propagation in complex design. J Mech Des 126(5):788–797. doi: 10.1115/1.1765117 CrossRefGoogle Scholar
  7. Cohen T, Navathe SB, Fulton RE (2000) C-FAR, Change favorable representation. Computer-aided Design 32(5–6):321–338. doi: 10.1016/S0010-4485(00)00015-4 CrossRefGoogle Scholar
  8. Eckert CM, Alink T, Ruckpaul A, Albers A (2011) Different notions of function: results from an experiment on the analysis of an existing product. J Eng Des 22(11–12):811–837. doi: 10.1080/09544828.2011.603297 CrossRefGoogle Scholar
  9. Eckert CM, Clarkson PJ, Zanker W (2004) Change and customization in complex engineering domains. Res Eng Design 15(1):1–21. doi: 10.1007/s00163-003-0031-7 CrossRefGoogle Scholar
  10. Eder WE (2011) Engineering design science and theory of technical systems: legacy of Vladimir Hubka. J Eng Des 22(5):361–385. doi: 10.1080/09544828.2010.522558 CrossRefGoogle Scholar
  11. Fei G, Gao J, Owodunni O, Tang X (2011) A method for engineering design change analysis using system modelling and knowledge management techniques. Int J Comput Integr Manuf 24(6):535–551. doi: 10.1080/0951192X.2011.562544 CrossRefGoogle Scholar
  12. Giffin M, de Weck O, Buonova G, Keller R, Eckert CM, Clarkson PJ (2009) Change propagation analysis in complex technical systems. J Mech Des 131(8):CID 081001. doi: 10.1115/1.3149847 CrossRefGoogle Scholar
  13. Habhouba D, Cherkaoui S, Desrochers A (2011) Decision-making assistance in engineering-change management process. IEEE Trans Syst Man Cybern Part C Appl Rev 41(3):344–349. doi: 10.1109/TSMCC.2010.2059013 CrossRefGoogle Scholar
  14. Ho C-J, Li J (1997) Progressive engineering changes in multi-level product structures. Omega Int J Manag Sci 25(5):585–594. doi: 10.1016/S0305-0483(97)00020-0 CrossRefGoogle Scholar
  15. Jarratt T, Eckert CM, Caldwell NHM, Clarkson PJ (2011) Engineering change: an overview and perspective on the literature. Res Eng Design 22(2):103–124. doi: 10.1007/s00163-010-0097-y CrossRefGoogle Scholar
  16. Kocar V, Akgunduz A (2010) ADVICE: a virtual environment for engineering change management. Comput Ind 61(1):15–28. doi: 10.1016/j.compind.2009.05.008 CrossRefGoogle Scholar
  17. Koh ECY, Caldwell NHM, Clarkson PJ (2012) A method to assess the effects of engineering change propagation. Res Eng Design (online first). doi: 10.1007/s00163-012-0131-3 Google Scholar
  18. Laporti V, Borges MRS, Braganholo V (2009) Athena: a collaborative approach to requirements elicitation. Comput Ind 60(6):367–380. doi: 10.1016/j.compind.2009.02.011 CrossRefGoogle Scholar
  19. Lee H, Seol H, Sung N, Hong YS, Park Y (2010) An analytic network process approach to measuring design change impacts in modular products. J Eng Des 21(1):75–91. doi: 10.1080/09544820802232517 CrossRefGoogle Scholar
  20. Li W, Moon YB (2012) Modeling and managing engineering changes in a complex product development process. J Adv Manuf Technol (online first). doi: 10.1007/s00170-012-3974-x
  21. Lindemann U, Maurer M, Braun T (2009) Structural complexity management: an approach for the field of product design. Springer, New YorkCrossRefGoogle Scholar
  22. Malmqvist J (1997) Improved function-means trees by inclusion of design history information. J Eng Des 8(2):107–117. doi: 10.1080/09544829708907955 CrossRefGoogle Scholar
  23. Morkos B, Shankar P, Summers JD (2012) Predicting requirement change propagation, using higher order design structure matrices: an industry case study. J Eng Design (iFirst). doi: 10.1080/09544828.2012.662273
  24. Ollinger GA, Stahovich TF (2004) RedesignIT—a model-based tool for managing design changes. J Mech Des 126(2):208–216. doi: 10.1115/1.1666888 CrossRefGoogle Scholar
  25. Otto K, Wood K (2001) Product design—techniques in reverse engineering and new product design. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  26. Ouertani MZ (2008) Supporting conflict management in collaborative design: an approach to assess engineering change impacts. Computers in Industry 59(9):882–893. doi: 10.1016/j.compind.2008.07.010 CrossRefGoogle Scholar
  27. Ouertani MZ, Grebici K (2010) Corrigendum to Supporting conflict management in collaborative design: An approach to assess engineering change impacts. (Comput. Ind. 59 (December(9)) (2008) 882893. doi: 10.1016/j.compind.2008.07.010 Comput. Ind. 61(5):509. doi: 10.1016/j.compind.2010.04.002
  28. Pahl W, Beitz G (2003) Engineering design: a systematic approach. Springer, New YorkGoogle Scholar
  29. Pasqual, M.C., de Weck, O.L. (2011) Multilayer network model for analysis and management of change propagation. Res Eng Design (online first). doi: 10.1007/s00163-011-0125-6
  30. Quintana V, Rivest L, Pellerin R, Kheddouci F (2012) Re-engineering the engineering change management process for a drawing-less environment. Comput Ind 63(1):79–90. doi: 10.1016/j.compind.2011.10.003 CrossRefGoogle Scholar
  31. Rahmani K, Thomson V (2011) Managing subsystem interfaces of complex products. Int J Product Lifecycle Manag 5(1):7383. doi: 10.1504/IJPLM.2011.038103 Google Scholar
  32. Reddi KR, Moon YB (2009) A framework for managing engineering change propagation. Int J Innov Learn 6(5):461–476. doi: 10.1504/IJIL.2009.025060 CrossRefGoogle Scholar
  33. Rouibah K, Caskey KR (2003) Change management in concurrent engineering from a parameter perspective. Comput Ind 50(1):15–34. doi: 10.1016/S0166-3615(02)00138-0 CrossRefGoogle Scholar
  34. Shankar P, Morkos B, Summers JD (2012) Reasons for change propagation: a case study in an automotive OEM, Res Eng Design (online first). doi: 10.1007/s00163-012-0132-2
  35. Stone RB, Wood KL (2000) Development of a Functional Basis for Design. J Mech Des 122(4):359–370. doi: 10.1115/1.1289637 CrossRefGoogle Scholar
  36. Suh ES, de Weck O, Chang D (2007) Flexible product platforms: framework and case study. Res Eng Design 18(2):67–89. doi: 10.1007/s00163-007-0032-z CrossRefGoogle Scholar
  37. Tang D, Xu R, Tang J, Xu R, He R (2010) Product design knowledge management based on design structure matrix. Adv Eng Inform 24(2):159–166. doi: 10.1016/j.aei.2009.08.005 CrossRefGoogle Scholar
  38. Ulrich K (1995) The role of product architecture in the manufacturing firm. Res Policy 24(3):419–440. doi: 10.1016/0048-7333(94)00775-3 MathSciNetCrossRefGoogle Scholar
  39. Wixon JR (1999) Function analysis and decomposition using function analysis systems technique, In: Proceedings of the ninth annual international council on systems engineering symposium (INCOSE 99), Brighton, England, 6–10 June 1999Google Scholar
  40. Wyatt DF, Wynn DC, Clarkson PJ (2009) Exploring spaces of system architectures using constraint-based classification and Euler diagrams. In: Kreimeyer M, Maier J, Fadel G, Lindemann U (eds). In: Proceedings of the 11th international DSM conference. Clemson USA, Publisher: Hanser Fachbuchverlag, pp 141–153Google Scholar
  41. Wynn DC (2007) Model-based approaches to support process improvement in complex product development, PhD thesis, University of Cambridge, United KingdomGoogle Scholar
  42. Yang F, Duan G-J (2012) Developing a parameter linkage-based method for searching change propagation paths. Res Eng Design (online first). doi: 10.1007/s00163-011-0124-7

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Naveed Ahmad
    • 1
  • David C. Wynn
    • 2
  • P. John Clarkson
    • 2
  1. 1.Comsats Institute of Information TechnologyIslamabadPakistan
  2. 2.Engineering DepartmentEngineering Design Centre Cambridge UniversityCambridgeUK

Personalised recommendations