A case-based reasoning approach toward developing a belief about the cost of concept

Original Paper


It is generally acknowledged that product development involves a sequence of decision making under uncertainty, including setting target requirements for a new product, selecting product concept, and developing conceptual and detailed design of a chosen concept. To select a product concept, engineers need to assess the uncertainty of a future market share, market size, and a cost of concept (cost of the final product developed from a concept). This paper proposes a case-based reasoning (CBR) approach to model beliefs about the uncertainty of a cost of concept. The proposed CBR approach consists of storing information about various products in a knowledge-base, defining a new product concept, retrieving a cluster of products in the knowledge-base that are highly similar to the concept, and adapting the cost of the retrieved product to construct a distribution of the cost of concept. This paper illustrates the proposed approach using printers as an example.


Cost Concept Clustering Distribution 


  1. Al-Shihabi T, Zeid I (1998) A design-plan-oriented methodology for applying case-based adaptation to engineering design. Artif Intell Eng Des Anal Manuf 12(5):463–478. doi: 10.1017/S0890060498125052 Google Scholar
  2. An S-H, Kim G-H, Kang K-I (2007) A case-based reasoning cost estimating model using experience by analytic hierarchy process. Build Environ 42(7):2573–2579. doi: 10.1016/j.buildenv.2006.06.007 CrossRefGoogle Scholar
  3. Angelis L, Stamelos I (2000) A simulation tool for efficient analogy based cost estimation. Empir Softw Eng 5(1):35–68. doi: 10.1023/A:1009897800559 CrossRefGoogle Scholar
  4. Auer M, Trendowicz A, Graser B, Haunschmid E, Biffl S (2006) Optimal project feature weights in analogy-based cost estimation: improvement and limitations. IEEE Trans Softw Eng 32(2):83–92. doi: 10.1109/TSE.2006.1599418 CrossRefGoogle Scholar
  5. Bardasz T, Zeid I (1991) Applying analogical problem solving to mechanical design. Comput Aided Des 23(3):202–212. doi: 10.1016/0010-4485(91)90090-J CrossRefGoogle Scholar
  6. Bardasz T, Zeid I (1993) DEJAVU: case-based reasoning for mechanical design. Artif Intell Eng Des Anal Manuf 7(2):111–124Google Scholar
  7. Brimson JA (1998) Feature costing: beyond ABC. J Cost Manage (January/February):6–12Google Scholar
  8. Clausing D (1993) Total quality development: a step-by-step guide to world-class concurrent engineering. ASME Press, New YorkGoogle Scholar
  9. Cooper R, Kaplan RS (1987) How cost accounting systematically distorts product costs. In: Kaplan RS, Bruns WJ Jr (eds) Accounting and management: field study perspectives. Harvard Business School Press, CambridgeGoogle Scholar
  10. Curran R, Price M, Raghunathan S, Benard E, Crosby S, Castagne S, Mawhinney P (2005) Integrating aircraft cost modeling into conceptual design. Concurrent Engineering. Res Appl 13(4):321–330Google Scholar
  11. Dewhuest P, Boothroyd G (1988) Early cost estimating in product design. J Manuf Syst 7(3):183–191. doi: 10.1016/0278-6125(88)90003-9 CrossRefGoogle Scholar
  12. Hamaker J (1995) Parametric estimating. In: Stewart RD, Wyskida RM, Johannes JD (eds) Cost estimator’s reference manual. Wiley, New YorkGoogle Scholar
  13. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New YorkMATHGoogle Scholar
  14. Hauser J, Clausing D (1988) The house of quality. Harv Bus Rev 66(3):63–73Google Scholar
  15. Hicks BJ, Culley SJ, Mullineux G (2002) Cost estimation for standard components and systems in the early phases of the design process. J Eng Des 13(4):271–292. doi: 10.1080/0954482021000050802 CrossRefGoogle Scholar
  16. Jeffery R, Ruhe M, Wieczorek I (2000) A comparative study of two software development cost modeling techniques using multi-organizational and company-specific data. Inf Softw Technol 42(14):1009–1016. doi: 10.1016/S0950-5849(00)00153-1 CrossRefGoogle Scholar
  17. Joint Industry/Government Parametric Cost Estimating Initiative (1999) Parametric estimating handbook. Department of DefenseGoogle Scholar
  18. Kim G-H, An S-H, Kang K-I (2004) Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning. Build Environ 39(10):1235–1242. doi: 10.1016/j.buildenv.2004.02.013 CrossRefGoogle Scholar
  19. Kolodner JL (1993) Case-based reasoning. Morgan Kaufmann Publishers, San MateoGoogle Scholar
  20. Lee KH, Lee K-Y (2002) Agent-based collaborative design system and conflict resolution based on a case-based reasoning approach. Artif Intell Eng Des Anal Manuf 16(2):93–102. doi: 10.1017/S0890060402020085 Google Scholar
  21. Looney SW, Gulledge TR Jr (1985) Use of the correlation coefficient with normal probability plots. Am Stat 39(1):75–79. doi: 10.2307/2683917 CrossRefGoogle Scholar
  22. Maher ML, Zhang DM (1993) CADSYN: a case-based design process model. Artif Intell Eng Des Anal Manuf 7(2):97–110Google Scholar
  23. Mardia KV, Kent JT, Bibby JM (2000) Multivariate analysis, 7th edn. Academic Press, San DiegoGoogle Scholar
  24. Mauchand M, Siadat A, Bernard A, Perry N (2008) Proposal for tool-based method of product cost estimation during conceptual design. J Eng Des 19(2):159–172. doi: 10.1080/09544820701802857 CrossRefGoogle Scholar
  25. Mendes E, Watson I, Triggs C, Mosley N, Counsell S (2003) A comparative study of cost estimation models for web hypermedia applications. Empir Softw Eng 8(2):163–196. doi: 10.1023/A:1023062629183 CrossRefGoogle Scholar
  26. Mileham AR, Currie GC, Miles AW, Bradford DT (1993) A parametric approach to cost estimating at the conceptual stage of design. J Eng Des 4(2):117–125. doi: 10.1080/09544829308914776 CrossRefGoogle Scholar
  27. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. Irwin, ChicagoGoogle Scholar
  28. Newnes LB, Mileham AR, Cheung WM, Marsh R, Lanham JD, Saravi ME, Bradbery RW (2008) Predicting the whole-life cost of a product at the conceptual design stage. J Eng Des 19(2):99–112. doi: 10.1080/09544820701803061 CrossRefGoogle Scholar
  29. Otto KN, Wood KL (2001) Product design: techniques in reverse engineering and new product development. Prentice-Hall Inc, Upper Saddle RiverGoogle Scholar
  30. Pahl G, Beitz W (1996) Engineering design—a systematic approach, 2nd edn. Springer, LondonGoogle Scholar
  31. Pugh S (1990) Total design. Addison-Wesley, ReadingGoogle Scholar
  32. Reich Y, Kapeliuk A (2004) Case-based reasoning with subjective influence knowledge. Appl Artif Intell 18(8):735–760. doi: 10.1080/08839510490496978 CrossRefGoogle Scholar
  33. Roderman S, Tsatsoulis C (1993) PANDA: a case-based system to AI novice designers. Artif Intell Eng Des Anal Manuf 7(2):125–133Google Scholar
  34. Rosenman M (2000) Case-based evolutionary design. Artif Intell Eng Des Anal Manuf 14(1):17–29. doi: 10.1017/S0890060400141022 Google Scholar
  35. Roy R, Kelvesjo S, Forsberg S, Rush C (2001) Quantitative and qualitative cost estimating for engineering design. J Eng Des 12(2):147–162. doi: 10.1080/09544820110038997 CrossRefGoogle Scholar
  36. Seo K-K, Park J-H, Jang D-S, Wallace D (2002) Approximate estimation of the product life cycle cost using artificial neural network in conceptual design. Int J Adv Manuf Technol 19(6):461–471. doi: 10.1007/s001700200049 CrossRefGoogle Scholar
  37. Shepperd M, Schofield C (1997) Estimating software project effort using analogies. IEEE Trans Softw Eng 23(12):736–743. doi: 10.1109/32.637387 CrossRefGoogle Scholar
  38. Shiva Kumar H, Krishnamoorthy CS (1995) A framework for case-based reasoning in engineering design. Artif Intell Eng Des Anal Manuf 9(3):161–182Google Scholar
  39. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, New YorkMATHGoogle Scholar
  40. Takai S (2007) An approach toward estimating cost of a new system in the conceptual design stage using knowledge-base. In: Proc ASME DETC/CIE, Las Vegas, Nevada, USA, DETC2007-35072Google Scholar
  41. Ulrich KT, Eppinger SD (2004) Product design and development. McGraw-Hill, BostonGoogle Scholar
  42. Watson P, Curran R, Murphy A, Cowan S (2006) Cost estimation of machined parts within and aerospace supply chain. Concurrent Engineering. Res Appl 14(1):17–26Google Scholar
  43. Wood WH, Agogino AM (1996) Case-based conceptual design information server for concurrent engineering. Comput Aided Des 28(5):361–369. doi: 10.1016/0010-4485(95)00055-0 CrossRefGoogle Scholar
  44. Wyskida RM (1995) Statistical techniques in cost estimation. In: Stewart RD, Wyskida RM, Johannes JD (eds) Cost estimator’s reference manual. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Department of Interdisciplinary EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations