Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 33, Issue 6, pp 603–623 | Cite as

Reduced-order control using low-rank dynamic mode decomposition

  • Palash SashittalEmail author
  • Daniel J. Bodony
Original Article

Abstract

In this work, we perform full-state LQR feedback control of fluid flows using non-intrusive data-driven reduced-order models. We propose a model reduction method called low-rank dynamic mode decomposition (lrDMD) that solves for a rank-constrained linear representation of the dynamical system. lrDMD is shown to have lower data reconstruction error compared to standard optimal mode decomposition (OMD) and dynamic mode decomposition (DMD), but with an increased computational cost arising from solving a non-convex matrix optimization problem. We demonstrate model order reduction in the complex linearized Ginzburg–Landau equation in the globally unstable regime and on the unsteady flow over a flat plate at a high angle of attack. In both cases, low-dimensional full-state feedback controller is constructed using reduced-order models constructed using DMD, OMD and lrDMD. It is shown that lrDMD stabilizes the Ginzburg–Landau system with a lower- order controller and is able to suppress vortex shedding from an inclined flat plate at a cost lower than either DMD or OMD. It is further shown that lrDMD yields an improved estimate of the adjoint system, for a given rank, relative to DMD and OMD.

Keywords

Flow control Dynamic mode decomposition Model reduction 

Notes

Acknowledgements

The authors would like to thank Mr. Daniel Floryan and Dr. Clarence Rowley for their help with the code used to simulate flow past an inclined flat plate. This work was sponsored, in part, by the Office of Naval Research (ONR) as part of the Multidisciplinary University Research Initiatives (MURI) Program, under Grant Number N00014-16-1-2617.

Supplementary material

References

  1. 1.
    Kim, J., Bodony, D.J., Freund, J.B.: Adjoint-based control of loud events in a turbulent jet. J. Fluid Mech. 741, 28–59 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Rowley, C.W., Dawson, S.T.M.: Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares petrov-Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)CrossRefGoogle Scholar
  5. 5.
    Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(3), 997–1013 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bagheri, S., Henningson, D.S., Hoepffner, J., Schmid, P.J.: Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62(2), 020803 (2009)CrossRefGoogle Scholar
  7. 7.
    Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.S.: Feedback control of three-dimensional optimal disturbances using reduced-order models. J. Fluid Mech. 677, 63–102 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.S.: Transition delay in a boundary layer flow using active control. J. Fluid Mech. 731, 288–311 (2013)zbMATHCrossRefGoogle Scholar
  9. 9.
    Illingworth, S.J.: Model-based control of vortex shedding at low reynolds numbers. Theor. Comput. Fluid Dyn. 30(5), 429–448 (2016)CrossRefGoogle Scholar
  10. 10.
    Kim, J., Bewley, T.R.: A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383–417 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Huang, S.-C., Kim, J.: Control and system identification of a separated flow. Phys. Fluids 20(10), 101509 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hervé, A., Sipp, D., Schmid, P.J., Samuelides, M.: A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 26–58 (2012)zbMATHCrossRefGoogle Scholar
  13. 13.
    Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21(1), 243–247 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Van Overschee, P., De Moor, B.: N4sid: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1), 75–93 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Van Overschee, P., De Moor, B.L.: Subspace Identification for Linear Systems: Theory Implementation Applications. Springer, Berlin (2012)zbMATHGoogle Scholar
  16. 16.
    Iñigo, J.G., Sipp, D., Schmid, P.J.: A dynamic observer to capture and control perturbation energy in noise amplifiers. J. Fluid Mech. 758, 728–753 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Qin, S.J.: An overview of subspace identification. Comput. Chem. Eng. 30(10–12), 1502–1513 (2006)CrossRefGoogle Scholar
  18. 18.
    Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)zbMATHCrossRefGoogle Scholar
  19. 19.
    Brunton, S.L., Dawson, S.T.M., Rowley, C.W.: State-space model identification and feedback control of unsteady aerodynamic forces. J. Fluids Struct. 50, 253–270 (2014)CrossRefGoogle Scholar
  20. 20.
    Flinois, T.L.B., Morgans, A.S.: Feedback control of unstable flows: a direct modelling approach using the eigensystem realisation algorithm. J. Fluid Mech. 793, 41–78 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ahuja, S., Rowley, C.W.: Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J. Fluid Mech. 645, 447–478 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Illingworth, S.J., Morgans, A.S., Rowley, C.W.: Feedback control of cavity flow oscillations using simple linear models. J. Fluid Mech. 709, 223–248 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Belson, B.A., Semeraro, O., Rowley, C.W., Henningson, D.S.: Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25(5), 054106 (2013)CrossRefGoogle Scholar
  24. 24.
    Illingworth, S.J., Naito, H., Fukagata, K.: Active control of vortex shedding: an explanation of the gain window. Phys. Rev. E 90(4), 043014 (2014)CrossRefGoogle Scholar
  25. 25.
    Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. arXiv preprint arXiv:1312.0041 (2013)
  27. 27.
    Goulart, P.J., Wynn, A., Pearson, D.: Optimal mode decomposition for high dimensional systems. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 4965–4970. IEEE (2012)Google Scholar
  28. 28.
    Chen, K.K., Rowley, C.W.: \(\text{ H }_2\) optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system. J. Fluid Mech. 681, 241–260 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Hemati, M.S., Williams, M.O., Rowley, C.W.: Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26(11), 111701 (2014)CrossRefGoogle Scholar
  30. 30.
    Hemati, M.S., Rowley, C.W., Deem, E.A., Cattafesta, L.N.: De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets. Theor. Comput. Fluid Dyn. 31(4), 349–368 (2017)CrossRefGoogle Scholar
  31. 31.
    Dawson, S.T.M., Hemati, M.S., Williams, M.O., Rowley, C.W.: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57(3), 42 (2016)CrossRefGoogle Scholar
  32. 32.
    Kramer, B., Peherstorfer, B., Willcox, K.: Feedback control for systems with uncertain parameters using online-adaptive reduced models. SIAM J. Appl. Dyn. Syst. 16(3), 1563–1586 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Deem, E.A., Cattafesta, L.N., Yao, H., Hemati, M., Zhang, H., Rowley, C.W.: Experimental implementation of modal approaches for autonomous reattachment of separated flows. In: 2018 AIAA Aerospace Sciences Meeting, p. 1052 (2018)Google Scholar
  34. 34.
    Hemati, M., Deem, E., Williams, M., Rowley, C.W., Cattafesta, L.N.: Improving separation control with noise-robust variants of dynamic mode decomposition. In: 54th AIAA Aerospace Sciences Meeting, p. 1103 (2016)Google Scholar
  35. 35.
    Bhattacharjee, D., Hemati, M., Klose, B., Jacobs, G.: Optimal actuator selection for airfoil separation control. In: 2018 Flow Control Conference, p. 3692 (2018)Google Scholar
  36. 36.
    Sashittal, P., Bodony, D.: Low-rank dynamic mode decomposition using Riemannian manifold optimization. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 2265–2270 (2018)Google Scholar
  37. 37.
    Héas, P., Herzet, C.: Low-rank approximation and dynamic mode decomposition. arXiv preprint arXiv:1610.02962 (2016)
  38. 38.
    Wynn, A., Pearson, D.S., Ganapathisubramani, B., Goulart, P.J.: Optimal mode decomposition for unsteady flows. J. Fluid Mech. 733, 473–503 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  40. 40.
    Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R., et al.: Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)zbMATHGoogle Scholar
  42. 42.
    Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems, vol. 1. Wiley, New York (1972)zbMATHGoogle Scholar
  44. 44.
    Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37(4), 1655–1674 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Alla, A., Simoncini, V.: Order reduction approaches for the algebraic Riccati equation and the LQR problem. arXiv preprint arXiv:1711.01077 (2017)
  46. 46.
    Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows, vol. 142. Springer, Berlin (2012)zbMATHGoogle Scholar
  47. 47.
    Schmid, P.J., Brandt, L.: Analysis of fluid systems: stability, receptivity, sensitivitylecture notes from the flow-nordita summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66(2), 024803 (2014)CrossRefGoogle Scholar
  48. 48.
    Luchini, P., Bottaro, A.: Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493–517 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Natarajan, M., Freund, J.B., Bodony, D.J.: Actuator selection and placement for localized feedback flow control. J. Fluid Mech. 809, 775–792 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Colonius, T., Taira, K.: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Methods Appl. Mech. Eng. 197(25–28), 2131–2146 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Ahuja, S.: Reduction Methods for Feedback Stabilization of Fluid Flows. PhD thesis, PhD thesis, Princeton University, NJ (2009)Google Scholar
  52. 52.
    Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of Illinois, Urbana-ChampaignUrbanaUSA

Personalised recommendations