# Layer formation in double-diffusive convection over resting and moving heated plates

## Abstract

We present a numerical study of double-diffusive convection characterized by a stratification unstable to thermal convection, while at the same time a mean molecular weight (or solute concentration) difference between top and bottom counteracts this instability. Convective zones can form in this case either by the stratification being locally unstable to the combined action of both temperature and solute gradients or by another process, the oscillatory double-diffusive convective instability, which is triggered by the faster molecular diffusivity of heat in comparison with that one of the solute. We discuss successive layer formation for this problem in the case of an instantaneously heated bottom (plate) which forms a first layer with an interface that becomes temporarily unstable and triggers the formation of further, secondary layers. We consider both the case of a Prandtl number typical for water (oceanographic scenario) and of a low Prandtl number (giant planet scenario). We discuss the impact of a Couette like shear on the flow and in particular on layer formation for different shear rates. Additional layers form due to the oscillatory double-diffusive convective instability, as is observed for some cases. We also test the physical model underlying our numerical experiments by recovering experimental results of layer formation obtained in laboratory setups.

## Keywords

Double-diffusive convection Layering Stability## Notes

### Acknowledgements

F. Kupka gratefully acknowledges financial support through Austrian Science Fund (FWF) Projects P 25229-N27 and P 29172-N27. The numerical simulations have been performed on the Vienna Scientific Cluster VSC (Project 70708), resources dedicated to the Faculty of Mathematics at VSC-3. We thank M.H. Montgomery for providing us with computational resources at the TACC Stampede2 cluster (University of Texas, Austin).

**Compliance with ethical standards**

**Conflict of interest** The authors declare that they have no conflict of interest.

## Supplementary material

## References

- 1.Armitage, K.B., House, H.B.: A limnological reconnaissance in the area of me-murdo sound, Antarctica. Limnol. Oceanogr.
**7**, 36–41 (1962)CrossRefGoogle Scholar - 2.Baines, P.G., Gill, A.E.: On thermohaline convection with linear gradients. J. Fluid Mech.
**37**(2), 289–306 (1969)CrossRefGoogle Scholar - 3.Bascoul, G.P.: Numerical simulations of semiconvection. In: Kupka, F., Roxburgh, I., Chan, K.L. (eds) Convection in Astrophysics, IAU Symposium, vol. 239, pp. 317–319 (2007). https://doi.org/10.1017/S1743921307000658
- 4.Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
- 5.Beckermann, C., Fan, C., Mihailovic, J.: Numerical simulations of double-diffusive convection in a hele-shaw cell. Int. Video J. Eng. Res.
**1**, 71–82 (1991)Google Scholar - 6.Biello, J.A.: Layer formation in semiconvection. PhD thesis, The University of Chicago (2001)Google Scholar
- 7.Canuto, V.M.: Turbulence in stars. III. Unified treatment of diffusion, convection, semiconvection, salt fingers, and differential rotation. Astrophys. J.
**524**, 311–340 (1999)CrossRefGoogle Scholar - 8.Canuto, V.M.: Stellar mixing. II. Double diffusion processes. Astron. Astrophys.
**528**, A77 (2011). https://doi.org/10.1051/0004-6361/201014448 CrossRefGoogle Scholar - 9.Canuto, V.M.: Stellar mixing. III. The case of a passive tracer. Astron. Astrophys.
**528**, A78 (2011). https://doi.org/10.1051/0004-6361/201015372 CrossRefGoogle Scholar - 10.Carpenter, J.R., Sommer, T., Wüest, A.: Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech.
**711**, 411–436 (2012). https://doi.org/10.1017/jfm.2012.399 MathSciNetCrossRefGoogle Scholar - 11.Carpenter, J.R., Sommer, T., Wüest, A.: Stability of a double-diffusive interface in the diffusive convection regime. J. Phys. Oceanogr.
**42**(5), 840–854 (2012). https://doi.org/10.1175/jpo-d-11-0118.1 CrossRefGoogle Scholar - 12.Chabrier, G., Baraffe, I.: Heat transport in giant (exo)planets: a new perspective. Astrophys. J. Lett.
**661**(1), L81 (2007)CrossRefGoogle Scholar - 13.Descy, J.P., Darchambeau, F., Schmid, M.: Lake Kivu: LImnology and Biogeochemistry of a Tropical Great Lake. Aquatic Ecology Series. Springer, New York (2012)CrossRefGoogle Scholar
- 14.Ding, C.Y., Li, Y.: Properties of semi-convection and convective overshooting for massive stars. Mon. Not. R. Astron. Soc.
**438**(2), 1137–1148 (2014). https://doi.org/10.1093/mnras/stt2262 CrossRefGoogle Scholar - 15.Fernando, H.J.S.: The formation of a layered structure when a stable salinity gradient is heated from below. J. Fluid Mech.
**182**, 525–541 (1987)CrossRefGoogle Scholar - 16.Fernando, H.J.S.: Buoyancy transfer across a diffusive interface. J. Fluid Mech.
**209**, 1–34 (1989)CrossRefGoogle Scholar - 17.Flanagan, J.D., Lefler, A.S., Radko, T.: Heat transport through diffusive interfaces. Geophys. Res. Lett.
**40**, 2466–2470 (2013). https://doi.org/10.1002/grl.50440 CrossRefGoogle Scholar - 18.Garaud, P.: Double-diffusive convection at low prandtl number. Annu. Rev. Fluid Mech.
**50**(1), 275–298 (2018). https://doi.org/10.1146/annurev-fluid-122316-045234 MathSciNetCrossRefGoogle Scholar - 19.Grossman, S.A., Taam, R.E.: Double-diffusive mixing-length theory, semiconvection and massive star evolution. Mon. Not. R. Astron. Soc.
**283**, 1165–1178 (1996). https://doi.org/10.1093/mnras/283.4.1165 CrossRefGoogle Scholar - 20.Happenhofer, N., Grimm-Strele, H., Kupka, F., Löw-Baselli, B., Muthsam, H.: A low mach number solver: enhancing applicability. J. Comput. Phys.
**236**, 96–118 (2013). https://doi.org/10.1016/j.jcp.2012.11.002 MathSciNetCrossRefGoogle Scholar - 21.Huppert, H., Moore, D.R.: Nonlinear double-diffusive convection. J. Fluid Mech.
**78**(4), 821–854 (1976)CrossRefGoogle Scholar - 22.Huppert, H.E., Linden, P.F.: On heating a stable salinity gradient from below. J. Fluid Mech.
**95**, 431–464 (1979). https://doi.org/10.1017/S0022112079001543 CrossRefGoogle Scholar - 23.Huppert, H.E., Turner, J.S.: Double-diffusive convection. J. Fluid Mech.
**106**, 299–329 (1981). https://doi.org/10.1017/S0022112081001614 MathSciNetCrossRefGoogle Scholar - 24.Kato, S.: Overstable convection in a medium stratified in mean molecular weight. Publ. Astron. Soc. Jpn.
**18**, 374 (1966)Google Scholar - 25.Kupka, F., Muthsam, H.J.: Modelling of stellar convection. Living Rev. Comput. Astrophys.
**3**, 1 (2017). https://doi.org/10.1007/s41115-017-0001-9 CrossRefGoogle Scholar - 26.Kupka, F., Losch, M., Zaussinger, F., Zweigle, T.: Semi-convection in the ocean and in stars: a multi-scale analysis. Meteorol. Z.
**24**(3), 343–358 (2015). https://doi.org/10.1127/metz/2015/0643 CrossRefGoogle Scholar - 27.Langer, N., El Eid, M.F., Fricke, K.J.: Evolution of massive stars with semiconvective diffusion. Astron. Astrophys.
**145**, 179–191 (1985)Google Scholar - 28.Leconte, J., Chabrier, G.: A new vision of giant planet interiors: impact of double diffusive convection. Astron. Astrophys.
**540**, A20 (2012). https://doi.org/10.1051/0004-6361/201117595 CrossRefGoogle Scholar - 29.Leconte, J., Chabrier, G.: Layered convection as the origin of Saturn/’s luminosity anomaly. Nat. Geosci.
**6**(5), 347–350 (2013). https://doi.org/10.1038/ngeo1791 CrossRefGoogle Scholar - 30.Ledoux, P.: Stellar models with convection and with discontinuity of the mean molecular weight. Astrophys. J.
**105**, 305–321 (1947). https://doi.org/10.1086/144905 MathSciNetCrossRefGoogle Scholar - 31.Lesieur, M.: Turbulence in Fluids. Fluid Mechanics and Its Applications. Springer, Dordrecht (2008)Google Scholar
- 32.Maeder, A., Meynet, G., Lagarde, N., Charbonnel, C.: The thermohaline, Richardson, Rayleigh-Taylor, Solberg–Høiland, and GSF criteria in rotating stars. A&A
**553**, A1 (2013). https://doi.org/10.1051/0004-6361/201220936 CrossRefGoogle Scholar - 33.Merryfield, W.J.: Hydrodynamics of semiconvection. Astrophys. J.
**444**, 318–337 (1995). https://doi.org/10.1086/175607 CrossRefGoogle Scholar - 34.Mirouh, G.M., Garaud, P., Stellmach, S., Traxler, A.L., Wood, T.S.: A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation. Astrophys. J.
**750**, 61 (2012). https://doi.org/10.1088/0004-637X/750/1/61 CrossRefGoogle Scholar - 35.Moore, K., Garaud, P.: Main sequence evolution with layered semiconvection. Astrophys. J.
**817**, 54 (2016)CrossRefGoogle Scholar - 36.Mutabazi, I., Yoshikawa, H.N., Fogaing, M.T., Travnikov, V., Crumeyrolle, O., Futterer, B., Egbers, C.: Thermo-electro-hydrodynamic convection under microgravity: a review. Fluid Dyn. Res.
**48**(6), 061413 (2016)MathSciNetCrossRefGoogle Scholar - 37.Muthsam, H., Kupka, F., Löw-Baselli, B., Obertscheider, C., Langer, M., Lenz, P.: Antares–a numerical tool for astrophysical research with applications to solar granulation. New Astron.
**15**(5), 460–475 (2010). https://doi.org/10.1016/j.newast.2009.12.005 CrossRefGoogle Scholar - 38.Radko, T.: A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech.
**497**, 365–380 (2003). https://doi.org/10.1017/S0022112003006785 MathSciNetCrossRefGoogle Scholar - 39.Radko, T.: Equilibration of weakly nonlinear salt fingers. J. Fluid Mech.
**645**, 121 (2010). https://doi.org/10.1017/S0022112009992552 CrossRefGoogle Scholar - 40.Radko, T.: Double-Diffusive Convection. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
- 41.Radko, T.: Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid Mech.
**805**, 147–170 (2016). https://doi.org/10.1017/jfm.2016.547 MathSciNetCrossRefGoogle Scholar - 42.Rosenblum, E., Garaud, P., Traxler, A., Stellmach, S.: Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory. Astrophys. J.
**731**, 66 (2011). https://doi.org/10.1088/0004-637X/731/1/66 CrossRefGoogle Scholar - 43.Silva Aguirre, V., Ballot, J., Serenelli, A.M., Weiss, A.: Constraining mixing processes in stellar cores using asteroseismology–impact of semiconvection in low-mass stars. Astron. Astrophys.
**529**, A63 (2011). https://doi.org/10.1051/0004-6361/201015847 CrossRefGoogle Scholar - 44.Sommer, T., Carpenter, J.R., Wüest, A.: Double-diffusive interfaces in Lake Kivu reproduced by direct numerical simulations. Geophys. Res. Lett.
**41**, 5114–5121 (2014). https://doi.org/10.1002/2014GL060716 CrossRefGoogle Scholar - 45.Spiegel, E.A.: Semiconvection. Comments Astrophys. Space Phys.
**1**, 57 (1969)Google Scholar - 46.Spruit, H.: The rate of mixing in semiconvective zones. Astron. Astrophys.
**253**, 131–138 (1992)Google Scholar - 47.Spruit, H.C.: Semiconvection: theory. Astron. Astrophys.
**552**, A76 (2013). https://doi.org/10.1051/0004-6361/201220575 CrossRefGoogle Scholar - 48.Stern, M.E.: The “salt-fountain” and thermohaline convection. Tellus
**12**(2), 172–175 (1960)CrossRefGoogle Scholar - 49.Stevenson, D.J.: Cosmochemistry and structure of the giant planets and their satellites. Icarus
**62**(1), 4–15 (1985). https://doi.org/10.1016/0019-1035(85)90168-X CrossRefGoogle Scholar - 50.Suarez, F., Childress, A.E., Tyler, S.W.: Temperature evolution of an experimental salt-gradient solar pond. J. Water Clim. Change
**1**(4), 246–250 (2010). https://doi.org/10.2166/wcc.2010.101 CrossRefGoogle Scholar - 51.Tayler, R.J.: The evolution of unmixed stars. Mon. Not. R. Astron. Soc.
**116**, 25 (1956). https://doi.org/10.1093/mnras/116.1.25 CrossRefGoogle Scholar - 52.Turner, J.S.: The behaviour of a stable salinity gradient heated from below. J. Fluid Mech.
**33**, 183–200 (1968)CrossRefGoogle Scholar - 53.Turner, J.S., Stommel, H.: A new case of convection in the presence of combined vertical salinity and temperature gradients. Proc. Natl. Acad. Sci. USA
**52**(1), 49–53 (1964). https://doi.org/10.1073/pnas.52.1.49 CrossRefGoogle Scholar - 54.Veronis, G.: On finite amplitude instability in thermohaline convection. J. Mar. Res.
**23**, 1–17 (1965)Google Scholar - 55.Walin, G.: Note on the stability of water stratified by both salt and heat. Tellus
**16**, 389 (1964)CrossRefGoogle Scholar - 56.Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
**12**, 620–631 (1998). https://doi.org/10.1063/1.168744 CrossRefGoogle Scholar - 57.Wood, T.S., Garaud, P., Stellmach, S.: A new model for mixing by double-diffusive convection (semi-convection). II. The transport of heat and composition through layers. Astrophys. J.
**768**, 157 (2013). https://doi.org/10.1088/0004-637X/768/2/157 CrossRefGoogle Scholar - 58.Xiong, D.R.: The evolution of massive stars using a non-local theory of convection. Astron. Astrophys.
**167**, 239–246 (1986)Google Scholar - 59.Young, Y., Rosner, R.: Numerical simulation of double-diffusive convection in a rectangular box. Phys. Rev. E
**61**, 2676–2694 (2000). https://doi.org/10.1103/PhysRevE.61.2676 CrossRefGoogle Scholar - 60.Zaussinger, F.: Numerical simulation of double-diffusive convection. PhD thesis, Univ. Vienna (2011) https://othes.univie.ac.at/13172/
- 61.Zaussinger, F., Spruit, H.C.: Semiconvection: numerical simulations. Astron. Astrophys.
**554**, A119 (2013). https://doi.org/10.1051/0004-6361/201220573 CrossRefGoogle Scholar - 62.Zaussinger, F., Kupka, F., Muthsam, H.J.: Semi-convection. In: Goupil, M., Belkacem, K., Neiner, C., Lignières, F., Green, J.J. (eds.) Lecture Notes in Physics, vol. 865, p. 219. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33380-4_11 Google Scholar
- 63.Zaussinger, F., Kupka, F., Egbers, C., Neben, M., Hücker, S., Bahr, C., Schmitt, M.: Semi-convective layer formation. In: Pogorelov, N., Pogorelov, E., Zank, G. (eds.) 11th International Conference on Numerical Modeling of Space Plasma Flows: ASTRONUM-2016, vol. 837, p. 012012 (2017) https://doi.org/10.1088/1742-6596/837/1/012012