Advertisement

Layer formation in double-diffusive convection over resting and moving heated plates

  • Florian ZaussingerEmail author
  • Friedrich Kupka
Original Article

Abstract

We present a numerical study of double-diffusive convection characterized by a stratification unstable to thermal convection, while at the same time a mean molecular weight (or solute concentration) difference between top and bottom counteracts this instability. Convective zones can form in this case either by the stratification being locally unstable to the combined action of both temperature and solute gradients or by another process, the oscillatory double-diffusive convective instability, which is triggered by the faster molecular diffusivity of heat in comparison with that one of the solute. We discuss successive layer formation for this problem in the case of an instantaneously heated bottom (plate) which forms a first layer with an interface that becomes temporarily unstable and triggers the formation of further, secondary layers. We consider both the case of a Prandtl number typical for water (oceanographic scenario) and of a low Prandtl number (giant planet scenario). We discuss the impact of a Couette like shear on the flow and in particular on layer formation for different shear rates. Additional layers form due to the oscillatory double-diffusive convective instability, as is observed for some cases. We also test the physical model underlying our numerical experiments by recovering experimental results of layer formation obtained in laboratory setups.

Keywords

Double-diffusive convection Layering Stability 

Notes

Acknowledgements

F. Kupka gratefully acknowledges financial support through Austrian Science Fund (FWF) Projects P 25229-N27 and P 29172-N27. The numerical simulations have been performed on the Vienna Scientific Cluster VSC (Project 70708), resources dedicated to the Faculty of Mathematics at VSC-3. We thank M.H. Montgomery for providing us with computational resources at the TACC Stampede2 cluster (University of Texas, Austin).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

References

  1. 1.
    Armitage, K.B., House, H.B.: A limnological reconnaissance in the area of me-murdo sound, Antarctica. Limnol. Oceanogr. 7, 36–41 (1962)CrossRefGoogle Scholar
  2. 2.
    Baines, P.G., Gill, A.E.: On thermohaline convection with linear gradients. J. Fluid Mech. 37(2), 289–306 (1969)CrossRefGoogle Scholar
  3. 3.
    Bascoul, G.P.: Numerical simulations of semiconvection. In: Kupka, F., Roxburgh, I., Chan, K.L. (eds) Convection in Astrophysics, IAU Symposium, vol. 239, pp. 317–319 (2007).  https://doi.org/10.1017/S1743921307000658
  4. 4.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  5. 5.
    Beckermann, C., Fan, C., Mihailovic, J.: Numerical simulations of double-diffusive convection in a hele-shaw cell. Int. Video J. Eng. Res. 1, 71–82 (1991)Google Scholar
  6. 6.
    Biello, J.A.: Layer formation in semiconvection. PhD thesis, The University of Chicago (2001)Google Scholar
  7. 7.
    Canuto, V.M.: Turbulence in stars. III. Unified treatment of diffusion, convection, semiconvection, salt fingers, and differential rotation. Astrophys. J. 524, 311–340 (1999)CrossRefGoogle Scholar
  8. 8.
    Canuto, V.M.: Stellar mixing. II. Double diffusion processes. Astron. Astrophys. 528, A77 (2011).  https://doi.org/10.1051/0004-6361/201014448 CrossRefGoogle Scholar
  9. 9.
    Canuto, V.M.: Stellar mixing. III. The case of a passive tracer. Astron. Astrophys. 528, A78 (2011).  https://doi.org/10.1051/0004-6361/201015372 CrossRefGoogle Scholar
  10. 10.
    Carpenter, J.R., Sommer, T., Wüest, A.: Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech. 711, 411–436 (2012).  https://doi.org/10.1017/jfm.2012.399 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Carpenter, J.R., Sommer, T., Wüest, A.: Stability of a double-diffusive interface in the diffusive convection regime. J. Phys. Oceanogr. 42(5), 840–854 (2012).  https://doi.org/10.1175/jpo-d-11-0118.1 CrossRefGoogle Scholar
  12. 12.
    Chabrier, G., Baraffe, I.: Heat transport in giant (exo)planets: a new perspective. Astrophys. J. Lett. 661(1), L81 (2007)CrossRefGoogle Scholar
  13. 13.
    Descy, J.P., Darchambeau, F., Schmid, M.: Lake Kivu: LImnology and Biogeochemistry of a Tropical Great Lake. Aquatic Ecology Series. Springer, New York (2012)CrossRefGoogle Scholar
  14. 14.
    Ding, C.Y., Li, Y.: Properties of semi-convection and convective overshooting for massive stars. Mon. Not. R. Astron. Soc. 438(2), 1137–1148 (2014).  https://doi.org/10.1093/mnras/stt2262 CrossRefGoogle Scholar
  15. 15.
    Fernando, H.J.S.: The formation of a layered structure when a stable salinity gradient is heated from below. J. Fluid Mech. 182, 525–541 (1987)CrossRefGoogle Scholar
  16. 16.
    Fernando, H.J.S.: Buoyancy transfer across a diffusive interface. J. Fluid Mech. 209, 1–34 (1989)CrossRefGoogle Scholar
  17. 17.
    Flanagan, J.D., Lefler, A.S., Radko, T.: Heat transport through diffusive interfaces. Geophys. Res. Lett. 40, 2466–2470 (2013).  https://doi.org/10.1002/grl.50440 CrossRefGoogle Scholar
  18. 18.
    Garaud, P.: Double-diffusive convection at low prandtl number. Annu. Rev. Fluid Mech. 50(1), 275–298 (2018).  https://doi.org/10.1146/annurev-fluid-122316-045234 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Grossman, S.A., Taam, R.E.: Double-diffusive mixing-length theory, semiconvection and massive star evolution. Mon. Not. R. Astron. Soc. 283, 1165–1178 (1996).  https://doi.org/10.1093/mnras/283.4.1165 CrossRefGoogle Scholar
  20. 20.
    Happenhofer, N., Grimm-Strele, H., Kupka, F., Löw-Baselli, B., Muthsam, H.: A low mach number solver: enhancing applicability. J. Comput. Phys. 236, 96–118 (2013).  https://doi.org/10.1016/j.jcp.2012.11.002 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Huppert, H., Moore, D.R.: Nonlinear double-diffusive convection. J. Fluid Mech. 78(4), 821–854 (1976)CrossRefGoogle Scholar
  22. 22.
    Huppert, H.E., Linden, P.F.: On heating a stable salinity gradient from below. J. Fluid Mech. 95, 431–464 (1979).  https://doi.org/10.1017/S0022112079001543 CrossRefGoogle Scholar
  23. 23.
    Huppert, H.E., Turner, J.S.: Double-diffusive convection. J. Fluid Mech. 106, 299–329 (1981).  https://doi.org/10.1017/S0022112081001614 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kato, S.: Overstable convection in a medium stratified in mean molecular weight. Publ. Astron. Soc. Jpn. 18, 374 (1966)Google Scholar
  25. 25.
    Kupka, F., Muthsam, H.J.: Modelling of stellar convection. Living Rev. Comput. Astrophys. 3, 1 (2017).  https://doi.org/10.1007/s41115-017-0001-9 CrossRefGoogle Scholar
  26. 26.
    Kupka, F., Losch, M., Zaussinger, F., Zweigle, T.: Semi-convection in the ocean and in stars: a multi-scale analysis. Meteorol. Z. 24(3), 343–358 (2015).  https://doi.org/10.1127/metz/2015/0643 CrossRefGoogle Scholar
  27. 27.
    Langer, N., El Eid, M.F., Fricke, K.J.: Evolution of massive stars with semiconvective diffusion. Astron. Astrophys. 145, 179–191 (1985)Google Scholar
  28. 28.
    Leconte, J., Chabrier, G.: A new vision of giant planet interiors: impact of double diffusive convection. Astron. Astrophys. 540, A20 (2012).  https://doi.org/10.1051/0004-6361/201117595 CrossRefGoogle Scholar
  29. 29.
    Leconte, J., Chabrier, G.: Layered convection as the origin of Saturn/’s luminosity anomaly. Nat. Geosci. 6(5), 347–350 (2013).  https://doi.org/10.1038/ngeo1791 CrossRefGoogle Scholar
  30. 30.
    Ledoux, P.: Stellar models with convection and with discontinuity of the mean molecular weight. Astrophys. J. 105, 305–321 (1947).  https://doi.org/10.1086/144905 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lesieur, M.: Turbulence in Fluids. Fluid Mechanics and Its Applications. Springer, Dordrecht (2008)Google Scholar
  32. 32.
    Maeder, A., Meynet, G., Lagarde, N., Charbonnel, C.: The thermohaline, Richardson, Rayleigh-Taylor, Solberg–Høiland, and GSF criteria in rotating stars. A&A 553, A1 (2013).  https://doi.org/10.1051/0004-6361/201220936 CrossRefGoogle Scholar
  33. 33.
    Merryfield, W.J.: Hydrodynamics of semiconvection. Astrophys. J. 444, 318–337 (1995).  https://doi.org/10.1086/175607 CrossRefGoogle Scholar
  34. 34.
    Mirouh, G.M., Garaud, P., Stellmach, S., Traxler, A.L., Wood, T.S.: A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation. Astrophys. J. 750, 61 (2012).  https://doi.org/10.1088/0004-637X/750/1/61 CrossRefGoogle Scholar
  35. 35.
    Moore, K., Garaud, P.: Main sequence evolution with layered semiconvection. Astrophys. J. 817, 54 (2016)CrossRefGoogle Scholar
  36. 36.
    Mutabazi, I., Yoshikawa, H.N., Fogaing, M.T., Travnikov, V., Crumeyrolle, O., Futterer, B., Egbers, C.: Thermo-electro-hydrodynamic convection under microgravity: a review. Fluid Dyn. Res. 48(6), 061413 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Muthsam, H., Kupka, F., Löw-Baselli, B., Obertscheider, C., Langer, M., Lenz, P.: Antares–a numerical tool for astrophysical research with applications to solar granulation. New Astron. 15(5), 460–475 (2010).  https://doi.org/10.1016/j.newast.2009.12.005 CrossRefGoogle Scholar
  38. 38.
    Radko, T.: A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365–380 (2003).  https://doi.org/10.1017/S0022112003006785 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Radko, T.: Equilibration of weakly nonlinear salt fingers. J. Fluid Mech. 645, 121 (2010).  https://doi.org/10.1017/S0022112009992552 CrossRefGoogle Scholar
  40. 40.
    Radko, T.: Double-Diffusive Convection. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  41. 41.
    Radko, T.: Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid Mech. 805, 147–170 (2016).  https://doi.org/10.1017/jfm.2016.547 MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rosenblum, E., Garaud, P., Traxler, A., Stellmach, S.: Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory. Astrophys. J. 731, 66 (2011).  https://doi.org/10.1088/0004-637X/731/1/66 CrossRefGoogle Scholar
  43. 43.
    Silva Aguirre, V., Ballot, J., Serenelli, A.M., Weiss, A.: Constraining mixing processes in stellar cores using asteroseismology–impact of semiconvection in low-mass stars. Astron. Astrophys. 529, A63 (2011).  https://doi.org/10.1051/0004-6361/201015847 CrossRefGoogle Scholar
  44. 44.
    Sommer, T., Carpenter, J.R., Wüest, A.: Double-diffusive interfaces in Lake Kivu reproduced by direct numerical simulations. Geophys. Res. Lett. 41, 5114–5121 (2014).  https://doi.org/10.1002/2014GL060716 CrossRefGoogle Scholar
  45. 45.
    Spiegel, E.A.: Semiconvection. Comments Astrophys. Space Phys. 1, 57 (1969)Google Scholar
  46. 46.
    Spruit, H.: The rate of mixing in semiconvective zones. Astron. Astrophys. 253, 131–138 (1992)Google Scholar
  47. 47.
    Spruit, H.C.: Semiconvection: theory. Astron. Astrophys. 552, A76 (2013).  https://doi.org/10.1051/0004-6361/201220575 CrossRefGoogle Scholar
  48. 48.
    Stern, M.E.: The “salt-fountain” and thermohaline convection. Tellus 12(2), 172–175 (1960)CrossRefGoogle Scholar
  49. 49.
    Stevenson, D.J.: Cosmochemistry and structure of the giant planets and their satellites. Icarus 62(1), 4–15 (1985).  https://doi.org/10.1016/0019-1035(85)90168-X CrossRefGoogle Scholar
  50. 50.
    Suarez, F., Childress, A.E., Tyler, S.W.: Temperature evolution of an experimental salt-gradient solar pond. J. Water Clim. Change 1(4), 246–250 (2010).  https://doi.org/10.2166/wcc.2010.101 CrossRefGoogle Scholar
  51. 51.
    Tayler, R.J.: The evolution of unmixed stars. Mon. Not. R. Astron. Soc. 116, 25 (1956).  https://doi.org/10.1093/mnras/116.1.25 CrossRefGoogle Scholar
  52. 52.
    Turner, J.S.: The behaviour of a stable salinity gradient heated from below. J. Fluid Mech. 33, 183–200 (1968)CrossRefGoogle Scholar
  53. 53.
    Turner, J.S., Stommel, H.: A new case of convection in the presence of combined vertical salinity and temperature gradients. Proc. Natl. Acad. Sci. USA 52(1), 49–53 (1964).  https://doi.org/10.1073/pnas.52.1.49 CrossRefGoogle Scholar
  54. 54.
    Veronis, G.: On finite amplitude instability in thermohaline convection. J. Mar. Res. 23, 1–17 (1965)Google Scholar
  55. 55.
    Walin, G.: Note on the stability of water stratified by both salt and heat. Tellus 16, 389 (1964)CrossRefGoogle Scholar
  56. 56.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998).  https://doi.org/10.1063/1.168744 CrossRefGoogle Scholar
  57. 57.
    Wood, T.S., Garaud, P., Stellmach, S.: A new model for mixing by double-diffusive convection (semi-convection). II. The transport of heat and composition through layers. Astrophys. J. 768, 157 (2013).  https://doi.org/10.1088/0004-637X/768/2/157 CrossRefGoogle Scholar
  58. 58.
    Xiong, D.R.: The evolution of massive stars using a non-local theory of convection. Astron. Astrophys. 167, 239–246 (1986)Google Scholar
  59. 59.
    Young, Y., Rosner, R.: Numerical simulation of double-diffusive convection in a rectangular box. Phys. Rev. E 61, 2676–2694 (2000).  https://doi.org/10.1103/PhysRevE.61.2676 CrossRefGoogle Scholar
  60. 60.
    Zaussinger, F.: Numerical simulation of double-diffusive convection. PhD thesis, Univ. Vienna (2011) https://othes.univie.ac.at/13172/
  61. 61.
    Zaussinger, F., Spruit, H.C.: Semiconvection: numerical simulations. Astron. Astrophys. 554, A119 (2013).  https://doi.org/10.1051/0004-6361/201220573 CrossRefGoogle Scholar
  62. 62.
    Zaussinger, F., Kupka, F., Muthsam, H.J.: Semi-convection. In: Goupil, M., Belkacem, K., Neiner, C., Lignières, F., Green, J.J. (eds.) Lecture Notes in Physics, vol. 865, p. 219. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-33380-4_11 Google Scholar
  63. 63.
    Zaussinger, F., Kupka, F., Egbers, C., Neben, M., Hücker, S., Bahr, C., Schmitt, M.: Semi-convective layer formation. In: Pogorelov, N., Pogorelov, E., Zank, G. (eds.) 11th International Conference on Numerical Modeling of Space Plasma Flows: ASTRONUM-2016, vol. 837, p. 012012 (2017)  https://doi.org/10.1088/1742-6596/837/1/012012

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Aerodynamics and Fluid MechanicsBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany
  2. 2.Institut für AstrophysikUniversität GöttingenGöttingenGermany
  3. 3.MPI for Solar System ResearchGöttingenGermany

Personalised recommendations