Advertisement

Exact instantaneous optimals in the non-geostrophic Eady problem and the detrimental effects of discretization

  • William Barham
  • Ian GroomsEmail author
Original Article

Abstract

We derive exact analytical expressions for flow configurations that optimize the instantaneous growth rate of energy in the linear Eady problem, along with the associated growth rates. These optimal perturbations are relevant linear stability analysis, but, more importantly, they are relevant for understanding the energetics of fully nonlinear baroclinic turbulence. The optimal perturbations and their growth rates are independent of the Richardson number. The growth rates of the optimal perturbations grow linearly as the horizontal wavelength of the perturbation decreases. Perturbation energy growth at large scales is driven by extraction of potential energy from the mean flow, while at small scales it is driven by extraction of kinetic energy from the mean shear. We also analyze the effect of spatial discretization on the optimal perturbations and their growth rates. A second-order energy-conserving discretization on the Arakawa B grid generally has too weak growth rates at small scales and is less accurate than two second-order discretizations on the Arakawa C grid. The two C-grid discretizations, one that conserves energy and another that conserves both energy and enstrophy, yield very similar optimal perturbation growth rates that are significantly more accurate than the B-grid discretization at small scales.

Keywords

Baroclinic instability Non-normal Ocean dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Arakawa, A., Lamb, V.R.: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. 17, 173–265 (1977)Google Scholar
  2. 2.
    Arakawa, A., Lamb, V.R.: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Weather Rev. 109(1), 18–36 (1981)CrossRefGoogle Scholar
  3. 3.
    Arakawa, A., Moorthi, S.: Baroclinic instability in vertically discrete systems. J. Atmos. Sci. 45(11), 1688–1708 (1988)CrossRefGoogle Scholar
  4. 4.
    Barham, W., Bachman, S., Grooms, I.: Some effects of horizontal discretization on linear baroclinic and symmetric instabilities. Ocean Model. 125, 106–116 (2018)CrossRefGoogle Scholar
  5. 5.
    Bell, M.J., White, A.A.: Spurious stability and instability in n-level quasi-geostrophic models. J. Atmos. Sci. 45(11), 1731–1738 (1988)CrossRefGoogle Scholar
  6. 6.
    Bell, M.J., White, A.A.: Analytical approximations to spurious short-wave baroclinic instabilities in ocean models. Ocean Model. 118, 31–40 (2017)CrossRefGoogle Scholar
  7. 7.
    Böberg, L., Brösa, U.: Onset of turbulence in a pipe. Z. Naturforsch. 43(8–9), 697–726 (1988)CrossRefGoogle Scholar
  8. 8.
    Bryan, K.: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4(3), 347–376 (1969)CrossRefzbMATHGoogle Scholar
  9. 9.
    Capet, X., Roullet, G., Klein, P., Maze, G.: Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Ocean. 46(11), 3365–3384 (2016)CrossRefGoogle Scholar
  10. 10.
    DelSole, T.: The necessity of instantaneous optimals in stationary turbulence. J. Atmos. Sci. 61(9), 1086–1091 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ducousso, N., Le Sommer, J., Molines, J.M., Bell, M.: Impact of the symmetric instability of the computational kind at mesoscale-and submesoscale-permitting resolutions. Ocean Model. 120, 18–26 (2017)CrossRefGoogle Scholar
  12. 12.
    Eady, E.T.: Long waves and cyclone waves. Tellus 1(3), 33–52 (1949)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Farrell, B.: Modal and non-modal baroclinic waves. J. Atmos. Sci. 41(4), 668–673 (1984)CrossRefGoogle Scholar
  14. 14.
    Farrell, B.: Transient growth of damped baroclinic waves. J. Atmos. Sci. 42(24), 2718–2727 (1985)CrossRefGoogle Scholar
  15. 15.
    Farrell, B.F.: Optimal excitation of baroclinic waves. J. Atmos. Sci. 46(9), 1193–1206 (1989)CrossRefGoogle Scholar
  16. 16.
    Farrell, B.F., Ioannou, P.J.: Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci. 53(14), 2025–2040 (1996)CrossRefGoogle Scholar
  17. 17.
    Ferrari, R., Wunsch, C.: Ocean circulation kinetic energy: reservoirs, sources, and sinks. Ann. Rev. Fluid Mech. 41, 253–282 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Griffies, S.M.: Fundamentals of Ocean Climate Models. Princeton University Press, Princeton (2004)zbMATHGoogle Scholar
  19. 19.
    Grooms, I.: Submesoscale baroclinic instability in the balance equations. J. Fluid Mech. 762, 256–272 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Haidvogel, D.B., Beckmann, A.: Numerical Ocean Circulation Modeling, vol. 2. World Scientific, Singapore (1999)zbMATHGoogle Scholar
  21. 21.
    Hollingsworth, A., Kållberg, P., Renner, V., Burridge, D.M.: An internal symmetric computational instability. Q. J. R. Meteorol. Soc. 109(460), 417–428 (1983)CrossRefGoogle Scholar
  22. 22.
    Kalashnik, M.V., Chkhetiani, O.: An analytical approach to the determination of optimal perturbations in the Eady model. J. Atmos. Sci. 75, 2741–2761 (2018)CrossRefGoogle Scholar
  23. 23.
    Le Sommer, J., Penduff, T., Theetten, S., Madec, G., Barnier, B.: How momentum advection schemes influence current-topography interactions at eddy permitting resolution. Ocean Model. 29(1), 1–14 (2009)CrossRefGoogle Scholar
  24. 24.
    Madec, G.: NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288–1619 (2008)Google Scholar
  25. 25.
    Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C.: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102(C3), 5753–5766 (1997)CrossRefGoogle Scholar
  26. 26.
    Rocha, C.B., Young, W.R., Grooms, I.: On Galerkin approximations of the surface active quasigeostrophic equations. J. Phys. Ocean. 46(1), 125–139 (2016)CrossRefGoogle Scholar
  27. 27.
    Roullet, G., McWilliams, J.C., Capet, X., Molemaker, M.J.: Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Ocean. 42(1), 18–38 (2012)CrossRefGoogle Scholar
  28. 28.
    Schmid, P.J.: Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129–162 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  30. 30.
    Smith, K.S.: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res. 65(5), 655–683 (2007)CrossRefGoogle Scholar
  31. 31.
    Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., et al.: The parallel ocean program (POP) reference manual. Los Alamos National Lab Technical Report 141, (2010)Google Scholar
  32. 32.
    Stone, P.H.: On non-geostrophic baroclinic stability. J. Atmos. Sci. 23(4), 390–400 (1966)CrossRefGoogle Scholar
  33. 33.
    Stone, P.H.: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci. 27(5), 721–726 (1970)CrossRefGoogle Scholar
  34. 34.
    Trefethen, L.N., Embree, M.: Spectra and Pseudospectra of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar
  35. 35.
    Tulloch, R., Marshall, J., Hill, C., Smith, K.S.: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Ocean. 41(6), 1057–1076 (2011)CrossRefGoogle Scholar
  36. 36.
    Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd edn. Cambridge University Press, Cambridge (2017)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations