On identification of self-similar characteristics using the Tensor Train decomposition method with application to channel turbulence flow
Abstract
A study on the application of the Tensor Train decomposition method to 3D direct numerical simulation data of channel turbulence flow is presented. The approach is validated with respect to compression rate and storage requirement. In tests with synthetic data, it is found that grid-aligned self-similar patterns are well captured and also the application to non-grid-aligned self-similarity yields satisfying results. It is observed that the shape of the input Tensor significantly affects the compression rate. Applied to data of channel turbulent flow, the Tensor Train format allows for surprisingly high compression rates whilst ensuring low relative errors. However, the results indicate that representation of highly irregular flows at low ranks cannot be expected.
Keywords
Self-similarity Turbulent flows Tensor Train formatPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
This research has been funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 ‘Scaling Cascades in Complex Systems’, Project B04 ‘Multiscale Tensor decomposition methods for partial differential equations’. The authors thank Prof. Illia Horenko (CRC 1114 Mercator Fellow) as well as Prof. Reinhold Schneider and Prof. Harry Yserentant for rich discussions and for steady support. Thomas von Larcher thanks Sebastian Wolf and Benjamin Huber (both at TU Berlin, Germany) very much for developing the Tensor library Xerus which has been used for data analysis, as well as for their round-the-clock support in the project. The data were generated and processed using resources of the North-German Supercomputing Alliance (HLRN), Germany, and of the Department of Mathematics and Computer Science, Freie Universität Berlin, Germany. The authors thank Alexander Kuhn and Christian Hege (both at Zuse Institute Berlin, Germany) for steady support in data processing and data visualization.
References
- 1.Adams, N.: A stochastic extension of the approximate deconvolution model. Phys. Fluids 23(055103), 1–9 (2011)Google Scholar
- 2.Adrian, R., Meinhart, C., Tomkins, C.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000). https://doi.org/10.1017/S0022112000001580 MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Bakewell, H., Lumley, J.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10(9), 1880–1889 (1967). https://doi.org/10.1063/1.1762382 CrossRefGoogle Scholar
- 4.Ballani, J., Grasedyck, L.: Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput. 36, A1415–A1431 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Bürger, K., et al.: Vortices within vortices: hierarchical nature of vortex tubes in turbulence. arXiv:1210.3325 [physics.flu-dyn] (2013)
- 6.Cattani, C.: Wavelet analysis of self similar functions. J. Dyn. Syst. Geom. Theor. 9(1), 75–97 (2011). https://doi.org/10.1080/1726037X.2011.10698594 MathSciNetzbMATHGoogle Scholar
- 7.Corino, E., Brodkey, R.: A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 1–30 (1969). https://doi.org/10.1017/S0022112069000395 CrossRefGoogle Scholar
- 8.De Stefano, G., Nejadmalayeri, A., Vasilyev, O.: Wall-resolved wavelet-based adaptive large-eddy simulation of bluff-body flows with variable thresholding. J. Fluid Mech. 788, 303–336 (2016). https://doi.org/10.1017/jfm.2015.708 MathSciNetCrossRefzbMATHGoogle Scholar
- 9.De Stefano, G., Vasilyev, O.: A fully adaptive wavelet-based approach to homogeneous turbulence simulation. J. Fluid Mech. 695, 149–172 (2012). https://doi.org/10.1017/jfm.2012.6 MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Dolgov, S., Khoromskij, B., Savostyanov, D.: Superfast Fourier transform using QTT approximation. J. Fourier Anal. Appl. 18, 915 (2012). https://doi.org/10.1007/s00041-012-9227-4 MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Farge, M., Rabreau, G.: Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels. C. R. Acad. Sci. Paris 307, 1479–1486 (1988)Google Scholar
- 12.Farge, M., Schneider, K., Kevlahan, N.: Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11, 2187 (1999). https://doi.org/10.1063/1.870080 MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Frisch, U., Sulem, P.L., Nelkin, M.: A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87(4), 719–736 (1978). https://doi.org/10.1017/S0022112078001846 CrossRefzbMATHGoogle Scholar
- 14.Fröhlich, J., Schneider, K.: Numerical simulation of decaying turbulence in an adaptive wavelet basis. Appl. Comput. Harmonic Anal. 3, 393–397 (1996). https://doi.org/10.1006/acha.1996.0033 CrossRefzbMATHGoogle Scholar
- 15.Fröhlich, J., Uhlmann, M.: Orthonormal polynomial wavelets on the interval and applications to the analysis of turbulent flow fields. SIAM J. Appl. Math. 63(5), 1789–1830 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids A 48, 273–337 (1991)zbMATHGoogle Scholar
- 17.Goldstein, D., Vasilyev, O.: Stochastic coherent adaptive large eddy simulation method. Phys. Fluids 16, 2497 (2004). https://doi.org/10.1063/1.1736671 MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM Mitteilungen 36, 53–78 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
- 20.Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 706–722 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Hackbusch, W., Schneider, R.: Tensor spaces and hierarchical tensor representations. In: Dahlke, S., Dahmen, W., Griebel, M., Hackbusch, W., Ritter, K., Schneider, R., Schwab, C., Yserentant, H. (eds.) Extraction of Quantifiable Information from Complex Systems. Lecture Notes in Computational Science and Engineering, vol. 102, pp. 237–361. Springer, New York (2014)Google Scholar
- 22.Hitchcock, F.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)CrossRefzbMATHGoogle Scholar
- 23.Horenko, I.: On clustering of non-stationary meteorological time series. Dyn. Atmos. Ocean 49, 164–187 (2010)CrossRefGoogle Scholar
- 24.Huber, B., Wolf, S.: Xerus—a general purpose tensor library. https://libxerus.org/ (2014–2015)
- 25.Hughes, T.: Multiscale phenomena: Greens functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Hunt, J.C.R.: Vorticity and vortex dynamics in complex turbulent flows. In: Canadian Society for Mechanical Engineering, Transactions (ISSN 0315-8977), vol. 11, no. 1, 1987, pp. 21–35 (1987)Google Scholar
- 27.Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: Studying Turbulence Using Numerical Simulation Databases, vol. 2 (1988)Google Scholar
- 28.Jimenez, J., Moin, P.: The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991)CrossRefzbMATHGoogle Scholar
- 29.John, V., Kindl, A.: A variational multiscale method for turbulent flow simulation with adaptive large scale space. J. Comput. Phys. 229, 301–312 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Kevlahan, N., Alam, J., Vasilyev, O.: Scaling of space-time modes with Reynolds number in two-dimensional turbulence. J. Fluid Mech. 570, 217–226 (2007). https://doi.org/10.1017/S0022112006003168 MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Khoromskij, B.: O(\(d \log {N}\))-quantics approximation of \({N}-d\) tensors in high-dimensional numerical modeling. Constr. Approx. 34, 257 (2011). https://doi.org/10.1007/s00365-011-9131-1 MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Khoromskij, B.: Tensor numerical methods for multidimensional PDEs: theoretical analysis and initial applications. ESAIM Proc. 48, 1–28 (2015). https://doi.org/10.1051/proc/201448001 MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Khoromskij, B., Miao, S.: Superfast wavelet transform using QTT approximation I: Haar wavelets. Comput. Methods Appl. Math. 14, 537–553 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefzbMATHGoogle Scholar
- 35.Kline, S., Robinson, S.: Quasi-coherent structures in the turbulent boundary layer. i—status report on a community-wide summary of the data. In: Kline, S., Afgan, N. (eds.) Near-Wall Turbulence, pp. 200–217. Routledge (1990)Google Scholar
- 36.Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.Kolmogorov, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. Acad. Sci. U.S.S.R. 30, 301 (1941)Google Scholar
- 38.Kolmogorov, A.: A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 62, 82 (1962)CrossRefzbMATHGoogle Scholar
- 39.Kutz, J.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)CrossRefzbMATHGoogle Scholar
- 40.von Larcher, T., Beck, A., Klein, R., Horenko, I., Metzner, P., Waidmann, M., Igdalov, D., Gassner, G., Munz, C.D.: Towards a framework for the stochastic modelling of subgrid scale fluxes for large eddy simulation. Meteorol. Z. 24(3), 313–342 (2015). https://doi.org/10.1127/metz/2015/0581 CrossRefzbMATHGoogle Scholar
- 41.Lesieur, M.: Turbulence in Fluids: Stochastic and Numerical Modelling. Nijhoff, The Hague (1987)CrossRefzbMATHGoogle Scholar
- 42.Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 43.Liu, S., Meneveau, C., Katz, J.: On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83–91 (1994)CrossRefGoogle Scholar
- 44.Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, Boston (2009)zbMATHGoogle Scholar
- 45.Metzner, P., Putzig, L., Horenko, I.: Analysis of persistent non-stationary time series and applications. CAMCoS 7, 175–229 (2012)CrossRefzbMATHGoogle Scholar
- 46.Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel flow up to R\(\text{ e }_\tau \)=590. Phys. Fluids 11(4), 943–945 (1999)CrossRefzbMATHGoogle Scholar
- 47.Nejadmalayeri, A., Vezolainen, A., DeStefano, G., Vasilyev, O.: Fully adaptive turbulence simulations based on lagrangian spatio-temporally varying wavelet thresholding. J. Fluid Mech. 749, 794–817 (2014). https://doi.org/10.1017/jfm.2014.241 MathSciNetCrossRefGoogle Scholar
- 48.Nejadmalayeri, A., Vezolainen, A., Vasilyev, O.: Reynolds number scaling of coherent vortex simulation and stochastic coherent adaptive large eddy simulation. Phys. Fluids 25(11), 110–823 (2013). https://doi.org/10.1063/1.4825260 CrossRefGoogle Scholar
- 49.Oboukhov, A.: Some specific features of atmospheric turbulence. J. Fluid Mech. 62, 77 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
- 50.Oseledets, I.: Approximation of \(2^{d}\times 2^{d}\) matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 31, 2130–2145 (2010)CrossRefzbMATHGoogle Scholar
- 51.Oseledets, I., Tyrtyshnikov, E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31, 3744–3759 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 52.Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432, 70–88 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 53.Oseledets, I., Tyrtyshnikov, E.: Algebraic wavelet transform via quantics tensor train decomposition. SIAM J. Sci. Comput. 33, 1315–1328 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 54.Paladin, G., Vulpiani, A.: Degrees of freedom of turbulence. Phys. Rev. A 35, 1971–1973 (1987). https://doi.org/10.1103/PhysRevA.35.1971 CrossRefGoogle Scholar
- 55.Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
- 56.Richardson, L.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)zbMATHGoogle Scholar
- 57.Robinson, S.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639 (1991)CrossRefGoogle Scholar
- 58.Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
- 59.Scotti, A., Meneveau, C.: A fractal model for large eddy simulation of turbulent flows. Physica D 127, 198–232 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 60.Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 93, 99–164 (1963)CrossRefGoogle Scholar
- 61.Ting, L., Klein, R., Knio, O.M.: Vortex Dominated Flows: Analysis and Computation for Multiple Scales. Series in Applied Mathematical Sciences, vol. 116. Springer, Berlin (2007)zbMATHGoogle Scholar
- 62.Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)MathSciNetCrossRefGoogle Scholar
- 63.Uhlmann, M.: Generation of a temporally well-resolved sequence of snapshots of the flow-field in turbulent plane channel flow (2000). http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/reports/produce.pdf. Accessed July 2017
- 64.Uhlmann, M.: Generation of initial fields for channel flow investigation. Intermediate Report (2000). http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/home/report.html. Accessed July 2017
- 65.Uhlmann, M.: The need for de-aliasing in a Chebyshev pseudo-spectral method. Technical note no. 60 (2000). http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/reports/dealias.pdf. Accessed July 2017
- 66.Vergassola, M., Frisch, U.: Wavelet transforms of self-similar processes. Phys. D Nonlinear Phenom. 54(1), 58–64 (1991). https://doi.org/10.1016/0167-2789(91)90107-K. http://www.sciencedirect.com/science/article/pii/016727899190107K
- 67.Wallace, J., Eckelmann, H., Brodkey, R.: The wall region in turbulent shear flow. J. Fluid Mech. 54(1), 39–48 (1972). https://doi.org/10.1017/S0022112072000515 CrossRefGoogle Scholar
- 68.Wang, J., Wu, J., Ling, J., Iaccarino, G., Xiao, H.: A comprehensive physics-informed machine learning framework for predictive turbulence modeling. arXiv:1701.07102v1 [physics.flu-dyn] (2017)
- 69.Willmarth, W., Lu, S.: Structure of the Reynolds stress near the wall. J. Fluid Mech. 55(1), 65–92 (1972). https://doi.org/10.1017/S002211207200165X CrossRefGoogle Scholar
- 70.Wu, J., Wang, J., Xiao, H., Ling, J.: A priori assessment of prediction confidence for data-driven turbulence modeling. arXiv:1607.04563v2 [physics.comp-ph] (2017)
- 71.Zhang, Z., Duraisamy, K.: Machine learning methods for data-driven turbulence modeling. AIAA Aviation (2015). https://doi.org/10.2514/6.2015-2460