Theoretical and Computational Fluid Dynamics

, Volume 32, Issue 6, pp 789–803 | Cite as

Property preserving reformulation of constitutive laws for the conformation tensor

  • Azadeh JafariEmail author
  • Alireza Chitsaz
  • Reza Nouri
  • Timothy N. Phillips
Original Article


The challenge for computational rheologists is to develop efficient and stable numerical schemes in order to obtain accurate numerical solutions for the governing equations at values of practical interest of the Weissenberg number. This study presents a new approach to preserve the symmetric positive definiteness of the conformation tensor and to bound the magnitude of its eigenvalues. The idea behind this transformation lies with the matrix logarithm formulation. Under the logarithmic transformation, the eigenvalue spectrum of the new conformation tensor varies from infinite positive to infinite negative. However reconstructing the classical formulation from unbounded eigenvalues does not achieve meaningful results. This enhanced formulation, expressed in terms of the hyperbolic tangent, overcomes the failure of alternative formulations by bounding the magnitude of eigenvalues in a manner that positive definite is always satisfied. In order to evaluate the capability of the hyperbolic tangent formulation, we performed a numerical simulation of FENE-P fluid in a rectangular channel in the context of the finite element method. Under this new transformation, the maximum attainable Weissenberg number increases by 21.4% and 112.5% compared to the standard log-conformation and classical constitutive equation, respectively.


Viscoelastic fluid flows High Weissenberg number problem Hyperbolic tangent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Afonso, A., Pinho, F., Alves, M.: The kernel-conformation constitutive laws. J. Non-Newton. Fluid Mech. 167–168, 30–37 (2012)zbMATHGoogle Scholar
  2. 2.
    Comminal, R., Spangenberg, J., Hattel, J.H.: Robust simulations of viscoelastic flows at high Weissenberg numbers with the streamfunction/log-conformation formulation. J. Non-Newton. Fluid Mech. 223, 37–61 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Coronado, O.M., Arora, D., Behr, M., Pasquali, M.: A simple method for simulating general viscoelastic fluid flow with an alternate log conformation formulation. J. Non-Newton. Fluid Mech. 147, 189–199 (2007)CrossRefGoogle Scholar
  4. 4.
    Dupret, F., Marchal, J.M.: Loss of evolution in the flow of viscoelastic fluids. J. Non-Newton. Fluid Mech. 20(C), 143–171 (1986)CrossRefGoogle Scholar
  5. 5.
    Fattal, R., Kupferman, R.: Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newton. Fluid Mech. 123, 281–285 (2004)CrossRefGoogle Scholar
  6. 6.
    Fattal, R., Kupferman, R.: Time-dependent simulation of viscoelastic flow at high Weissenberg number using the log-conformation representation. J. Non-Newton. Fluid Mech. 126, 23–37 (2005)CrossRefGoogle Scholar
  7. 7.
    Housiadas, K.D., Wang, L., Beris, A.N.: A new method preserving the positive definiteness of a second order tensor variable in flow simulations with application to viscoelastic turbulence. Comput. Fluids 39(2), 225–241 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hulsen, M.A.: A sufficient condition for a positive definite configuration tensor in differential models. J. Non-Newton. Fluid Mech. 38(1), 93–100 (1990)CrossRefGoogle Scholar
  9. 9.
    Hulsen, M.A., Fattal, R., Kupferman, R.: Flow of viscoelastic fluid past a cylinder at high Weissenberg number: stabilized simulation using matrix logarithms. J. Comput. Phys. 127, 27–39 (2005)zbMATHGoogle Scholar
  10. 10.
    Jafari, A., Fiétier, N., Deville, M.O.: A new extended matrix logarithm formulation for the simulation of viscoelastic fluids by spectral elements. Comput. Fluids 39(9), 1425–1438 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kwon, Y.: Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations. Korea-Australia Rheol. J. 4, 183–191 (2004)Google Scholar
  12. 12.
    Kwon, Y., Leonov, A.I.: Stability constraints in the formulation of viscoelastic constitutive equations. J. Non-Newton. Fluid Mech. 58(1), 25–46 (1995)CrossRefGoogle Scholar
  13. 13.
    Leonov, A.I.: Viscoelastic constitutive equations and rheology for high-speed polymer processing. J. Polym. Int. 36, 187–193 (1995)CrossRefGoogle Scholar
  14. 14.
    Owens, R.G., Phillips, T.N.: Computational Rheology. Imperial College Press, London (2002)CrossRefGoogle Scholar
  15. 15.
    Saramito, P.: On a modified non-singular log-conformation formulation for Johnson-Segalman viscoelastic fluids. J. Non-Newton. Fluid Mech. 211, 16–30 (2014)CrossRefGoogle Scholar
  16. 16.
    Tomé, M., Castelo, A., Afonso, A., Alves, M., Pinho, F.: Application of the log-conformation tensor to three-dimensional time-dependent free surface flows. J. Non-Newton. Fluid Mech. 175176, 44–54 (2012)CrossRefGoogle Scholar
  17. 17.
    Vaithianathan, T., Robert, A., Brasseur, J.G., Collins, L.R.: An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newton. Fluid Mech. 140(1–3), 3–22 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.School of MathematicsCardiff UniversityCardiffUK

Personalised recommendations