Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 32, Issue 4, pp 495–520 | Cite as

One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application

  • David O. Lignell
  • Victoria B. Lansinger
  • Juan Medina
  • Marten Klein
  • Alan R. Kerstein
  • Heiko Schmidt
  • Marco Fistler
  • Michael Oevermann
Original Article

Abstract

The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.

Keywords

One-dimensional turbulence ODT Cylindrical Turbulence modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Ashurst, W.T., Kerstein, A.R.: One-dimensional turbulence: variable-density formulation and application to mixing layers. Phys. Fluids 17(2), 025107 (2005).  https://doi.org/10.1063/1.1847413 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ashurst, W.T., Kerstein, A.R.: Erratum: one-dimensional turbulence: variable density formulation and application to mixing layers. Phys. Fluids 21–119901, 1 (2009)Google Scholar
  3. 3.
    Binder, G., Favre-Marinet, M.: Some characteristics of pulsating or flapping jets. In: Michel, R., Cousteix, J., Houdeville, R. (eds.) Unsteady Turbulent Shear Flows, pp. 370–379. Springer, Berlin (1981)CrossRefGoogle Scholar
  4. 4.
    Cao, S., Echekki, T.: A low-dimensional stochastic closure model for combustion large-eddy simulation. J. Turbul. 9, 1–35 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cengel, Y.A., Cimbala, J.M.: Fluid Mechanics, 2nd edn. McGraw-Hill, New York (2006)Google Scholar
  6. 6.
    Chin, C., Monty, J.P., Ooi, A.: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Int. J. Heat Fluid Flow 45, 33–40 (2014)CrossRefGoogle Scholar
  7. 7.
    Cohen, S.D., Hindmarsh, A.C.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10, 138–143 (1996)CrossRefGoogle Scholar
  8. 8.
    Cook, A.W., Riley, J.J., Kosaly, G.: A laminar flamelet approach to subgrid-scale chemistry in turbulent flows. Combust. Flame 109, 332–341 (1997)CrossRefGoogle Scholar
  9. 9.
    Echekki, T., Kerstein, A.R., Dreeben, T.D.: One-dimensional turbulence simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combust. Flame 125, 1083–1105 (2001)CrossRefGoogle Scholar
  10. 10.
    Fairweather, M., Woolley, R.: First-order conditional moment closure modeling of turbulent, nonpremixed methane flames. Combust. Flame 138, 3–19 (2004)CrossRefGoogle Scholar
  11. 11.
    Gastine, T., Wicht, J., Aurnou, J.M.: Turbulent Rayleigh–Benard convection in spherical shells. J. Fluid Mech. 778, 721–764 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldschmidt, V.W., Bradshaw, P.: Flapping of a plane jet. Phys. Fluids 16, 354–355 (1973)CrossRefGoogle Scholar
  13. 13.
    Goshayeshi, B., Sutherland, J.C.: Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the one-dimensional turbulence model. Proc. Combust. Inst. 35, 2829–2837 (2015)CrossRefGoogle Scholar
  14. 14.
    Hewson, J.C., Ricks, A.J., Tieszen, S.R., Kerstein, A.R., Fox, R.O.: Conditional moment closure with differential diffusion for soot evolution in fire. In: Center for Turbulence Research, Proceedings of the Summer Program (2006)Google Scholar
  15. 15.
    Hewson, J.C., Kerstein, A.R.: Stochastic simulation of transport and chemical kinetics in turbulent CO/H\(_2\)/N\(_2\) flames. Combust. Theor. Model. 5, 669–697 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hewson, J.C., Kerstein, A.R.: Local extinction and reignition in nonpremixed turbulent CO/H\(_2\)/N\(_2\) jet flames. Combust. Sci. Technol. 174, 35–66 (2002)CrossRefGoogle Scholar
  17. 17.
    Hewson, J.C., Ricks, A.J., Tieszen, S.R., Kerstein, A.R., Fox, R.O.: On the transport of soot relative to a flame: modeling differential diffusion for soot evolution in fire. In: Bockhorn, H., D’Anna, A., Sarofim, A.F., Wang, H. (eds.) Combustion Generated Fine Carbonaceous Particles, pp. 571–588. KIT Scientific Publishing, Karlsruhe (2009)Google Scholar
  18. 18.
    Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75 (1994)CrossRefGoogle Scholar
  19. 19.
    International workshop on measurement and computation of turbulent nonpremixed flames. http://www.sandia.gov/TNF/DataArch/DLRflames.html. Accessed 5 June 2018
  20. 20.
    Jozefik, Z., Kerstein, A.R., Schmidt, H., Lyra, S., Kolla, H., Chen, J.H.: One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS. Combust. Flame 162, 2999–3015 (2015)CrossRefGoogle Scholar
  21. 21.
    Jozefik, Z., Kerstein, A.R., Schmidt, H.: Simulation of shock-turbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using one-dimensional turbulence. Combust. Flame 164, 53–67 (2016)CrossRefGoogle Scholar
  22. 22.
    Kerstein, A.R.: Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 231, 361–394 (1991)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kerstein, A.R.: One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277–334 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kerstein, A.R., Dreeben, T.D.: Prediction of turbulent free shear flow statistics using a simple stochastic model. Phys. Fluids 12, 418–424 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kerstein, A.R., Ashurst, W.T., Wunsch, S., Nilsen, V.: One-dimensional turbulence: vector formulation and application to free shear flows. J. Fluid Mech. 447, 85–109 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Khoury, G., Schlatter, P., Noorani, A., Fischer, P., Brethouwer, G., Johansson, A.: Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbulence Combust. 91, 475–495 (2013)CrossRefGoogle Scholar
  27. 27.
    Krishnamoorthy, N.: Reaction models and reaction state parameterization for turbulent nonpremixed combustion. Ph.D. thesis, The University of Utah (2008)Google Scholar
  28. 28.
    Lackmann, T., Kerstein, A.R., Oevermann, M.: A representative linear eddy model for simulating spray combustion in engines. Combust. Flame 193, 1–15 (2017)CrossRefGoogle Scholar
  29. 29.
    Lee, K.W., Choi, D.H.: Prediction of NO in turbulent diffusion flames using eulerian particle flamelet model. Combust. Theor. Model. 12, 905–927 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Lee, K., Choi, D.: Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model. Int. J. Heat Mass Transf. 52, 1412–1420 (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Lewis, P.A., Shedler, G.S.: Simulation of nonhomogeneous poisson processes by thinning. Naval Res. Logist. Q. 26, 403–413 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lignell, D.O., Rappleye, D.: One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames. Combust. Flame 159, 2930–2943 (2012)CrossRefGoogle Scholar
  33. 33.
    Lignell, D.O., Kerstein, A.R., Sun, G., Monson, E.I.: Mesh adaption for efficient multiscale implementation of one-dimensional turbulence. Theoret. Comput. Fluid Dyn. 27, 273–295 (2013)CrossRefGoogle Scholar
  34. 34.
    Lignell, D.O., Fredline, G.C., Lewis, A.D.: Comparison of one-dimensional turbulence and direct numerical simulations of soot formation and transport in a nonpremixed ethylene jet flame. Proc. Combust. Inst. 35, 1199–1206 (2015)CrossRefGoogle Scholar
  35. 35.
    Lindstedt, R., Ozarovsky, H.: Joint scalar transported PDF modeling of nonpiloted turbulent diffusion flames. Combust. Flame 143, 471–490 (2005)CrossRefGoogle Scholar
  36. 36.
    Meier, W., Barlow, R., Chen, Y.L., Chen, J.Y.: Raman/Rayleigh/LIF measurements in a turbulent CH\(_4\)/H\(_2\)/N\(_2\) jet diffusion flame: experimental techniques and turbulence-chemistry interaction. Combust. Flame 123, 326–343 (2000)CrossRefGoogle Scholar
  37. 37.
    Meiselbach, F.: Application of ODT to turbulent flow problems. Ph.D. thesis, Brandenburgische Technische Universität Cottbus-Senftenberg (2015)Google Scholar
  38. 38.
    Monson, E.I., Lignell, D.O., Werner, C., Hintze, R.S., Finney, M.A., Jozefik, Z., Kerstein, A.R.: Simulation of ethylene wall fires using the spatially-evolving one-dimensional turbulence model. Fire Sci. Technol. 52, 167–196 (2016)CrossRefGoogle Scholar
  39. 39.
    Motheau, E., Abraham, J.: A high-order numerical algorithm for DNS of low-mach-number reactive flows with detailed chemistry and quasi-spectral accuracy. J. Comput. Phys. 313, 430–454 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)Google Scholar
  41. 41.
    Pitsch, H.: Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123, 358–374 (2000)CrossRefGoogle Scholar
  42. 42.
    Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.: An evaluation of the one-dimensional turbulence model: comparison with direct numerical simulations of CO/H\(_2\) jets with extinction and reignition. Proc. Combust. Inst. 33, 1515–1522 (2011)CrossRefGoogle Scholar
  43. 43.
    Rehm, R.G., Baum, H.R.: The equations of motion for thermally driven buoyant flows. J. Res. Natl. Bur. Stand. 83, 297–308 (1978)CrossRefzbMATHGoogle Scholar
  44. 44.
    Ricks, A.J., Hewson, J.C., Kerstein, A.R., Gore, J.P., Tieszen, S.R., Ashurst, W.T.: A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames. Combust. Sci. Technol. 182, 60–101 (2010)CrossRefGoogle Scholar
  45. 45.
    Schmidt, R.C., Kerstein, A.R., Wunsch, S., Nilsen, V.: Near-wall LES closure based on one-dimensional turbulence modeling. J. Comput. Phys. 186, 317–355 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Schmidt, J.R., Wendt, J.O.L., Kerstein, A.R.: Non-equilibrium wall deposition of inertial particles in turbulent flow. J. Stat. Phys. 137, 233–257 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Schmidt, R.C., Kerstein, A.R., McDermott, R.: ODTLES: a multi-scale model for 3D turbulent flow based on one-dimensional turbulence modeling. Comput. Methods Appl. Mech. Eng. 199, 865–880 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Shihn, H., DesJardin, P.E.: Near-wall modeling for vertical wall fires using one-dimensional turbulence. In: Proceedings of IMECE04 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA (November 13–20, 2004)Google Scholar
  49. 49.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Sun, G., Lignell, D.O., Hewson, J.C., Gin, C.R.: Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model. Phys. Fluids 26, 103,301 (2014)CrossRefGoogle Scholar
  51. 51.
    Sun, G., Hewson, J.C., Lignell, D.O.: Evaluation of stochastic particle dispersion modeling in turbulent round jets. Int. J. Multiph. Flow 89, 108–122 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Wang, H., Pope, S.B.: Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame. Proc. Combust. Inst. 33, 1319–1330 (2011)CrossRefGoogle Scholar
  53. 53.
    Wunsch, S., Kerstein, A.: A model for layer formation in stably stratified turbulence. Phys. Fluids 13, 702–712 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringBrigham Young UniversityProvoUSA
  2. 2.Brandenburgische Technische Universität Cottbus-SenftenbergCottbusGermany
  3. 3.DanvilleUSA
  4. 4.Chalmers UniversityGothenburgSweden

Personalised recommendations