Theoretical and Computational Fluid Dynamics

, Volume 32, Issue 4, pp 425–449 | Cite as

Global stability analysis of axisymmetric boundary layer over a circular cylinder

  • Ramesh Bhoraniya
  • Narayanan Vinod
Original Article


This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier–Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi’s iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.


Axisymmetric boundary layer Global stability Transverse curvature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Akervik, E., Ehrenstein, U., Gallaire, F., Henningson, D.S.: Global two-dimensional stability measure of the flat plate boundary-layer flow. Eur. J. Mech. B/Fluids 27, 501–513 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alizard, F., Robinet, J.C.: Speatially convective global modes in a boundary layer. Phys. Fluids 19, 114105 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bert, P.: Universal short wave instability of two dimensional eddies in inviscid fluid. Phys. Rev. Lett. 57, 2157–2159 (1986)CrossRefGoogle Scholar
  4. 4.
    Christodoulou, K.N., Scriven, L.E.: Finding leading modes of a viscous free surface flow: an asymmetric generalized eigenproblem. J. Sci. Comput. 3, 355–406 (1988)CrossRefzbMATHGoogle Scholar
  5. 5.
    Costa, B., Don, W., Simas, A.: Spatial resolution properties of mapped spectral Chebyshev methods. In: Proceedings SCPDE: Recent Progress in Scientific Computing, pp. 179–188 (2007)Google Scholar
  6. 6.
    Crighton, D.G., Gaster, M.: Stability of slowly diverging jet flow. J. Fluid Mech. 77, 397–413 (1976)CrossRefzbMATHGoogle Scholar
  7. 7.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge Univerisity Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Duck, P.W.: The effect of a surface discountinuty on a axisymmetric on an axisymmetric boundary layer. Q. J. Mech. Appl. Math. 37, 57–74 (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Duck, P.W.: The inviscid axisymmetric stability of the supersonic flow along a circular cylinder. J. Fluid Mech. 214, 611–637 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Duck, P.W., Hall, P.: On the interaction of Tollmein-Shlichting waves in axisymmetric supersonic flows. Q. J. Mech. Appl. Math. 42, 115–130 (1989)CrossRefzbMATHGoogle Scholar
  11. 11.
    Duck, P.W., Shaw, S.J.: The inviscid stability of supersonic flow past a sharp cone. Theor. Comput. Fluid Dyn. 2, 139–163 (1990)zbMATHGoogle Scholar
  12. 12.
    Ehrenstein, U., Gallaire, F.: On two-dimensioanl temporal modes in spatially evolving open flow: the flat-plate boundary layer. J. Fluid Mech. 536, 209–218 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fasel, H., Rist, U., Konzelmann, U.: Numericla investigation of the three-dimensional development in boundary layer transition. AIAA J. 28, 29–37 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Glauert, M.B., Lighthill, M.J.: The axisymmetric boundary layer on a thin cylinder. Proc. R. Soc. A 230, 1881 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Herrada, M.A., Del Pino, C., FernandezFeria, R.: Stability of the boundary layer flow on a long thin rotating cylinder. Phys. Fluids 20, 034105 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Jackson, C.P.: A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345 (1987)CrossRefzbMATHGoogle Scholar
  17. 17.
    Joseph, D.D.: Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Ration. Mech. 22, 163–184 (1966)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kao, K., Chow, C.: Stability of the boundary layer on a spining semi-infinite circular cylinder. J. Spacecr. Rockets 28, 284–291 (1991)CrossRefGoogle Scholar
  19. 19.
    Lin, R.S., Malik, M.R.: On the stability of attachment-line boundary layers. Part 1. The incompressible swept Hiemenz flow. J. Fluid Mech. 311, 239–255 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lin, R.S., Malik, M.R.: On the stability of attachment-line boundary layers. Part 2. The incompressible swept Hiemenz flow. J. Fluid Mech. 333, 125–137 (1997)CrossRefGoogle Scholar
  21. 21.
    Mack, L.M.: Stability of axisymmetric boundary layers on sharp cones at hypersonic mach numbers. In: 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference, p. 1413 (1987)Google Scholar
  22. 22.
    Malik, M.R.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376–412 (1990)CrossRefzbMATHGoogle Scholar
  23. 23.
    Malik, M.R., Poll, D.I.A.: Effect of curvature on three dimensional boundary layer stability. AIAA J. 23, 1362–1369 (1985)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Malik, M.R., Spall, R.E.: On the stability of compressible flow past axisymmetric bodies. J. Fluid Mech. 228, 443–463 (1987)zbMATHGoogle Scholar
  25. 25.
    Monokrousos, A., Akervik, E., Brandt, L., Heningson, H.: Global three-dimensional optimal disturbances in the Blasius boundary layer flow using time stepers. J. Fluid Mech. 650, 181–214 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Muralidhar, S.D., Pier, B., Scott, J.F., Govindarajan, R.: Flow around a rotating, semi-infinite cylinder in an axial stream. Proc. R. Soc. A 472, 20150850 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Petrov, G.V.: Boundary layer on rotating cylinder in axial flow. J. Appl. Mech. Tech. Phys. 17, 506–510 (1976)CrossRefGoogle Scholar
  28. 28.
    Rao, G.N.V.: Mechanics of transition in an axisymmetric laminar boundary layer on a circular cylinder. J. Appl. Math. Phys. 25, 6375 (1974)CrossRefGoogle Scholar
  29. 29.
    Rempfer, D.: On boundary conditions for incompressible Navier–Stokes problems. App. Mech. Rev. 59(3), 107–125 (2006)CrossRefGoogle Scholar
  30. 30.
    Roache, P.J.: A method for uniform reporting of grid refinment study. J. Fluids Eng. 116, 405413 (1994)Google Scholar
  31. 31.
    Swaminathan, G., Shahu, K., Sameen, A., Govindarajan, R.: Global instabilities in diverging channel flows. Theor. Comput. Fluid Dyn. 25, 53–64 (2011)CrossRefzbMATHGoogle Scholar
  32. 32.
    Tatsumi, T., Yoshimura, T.: Stability of the laminar flow in a rectangular duct. J. Fluid Mech. 212, 437–449 (1990)CrossRefzbMATHGoogle Scholar
  33. 33.
    Tezuka, A., Suzuki, K.: Three-dimensional global linear stability analysis of flow around a spheroid. AIAA J. 44, 1697–1708 (2006)CrossRefGoogle Scholar
  34. 34.
    Theofilis, V.: Advances in global linear instability analysis of nonparallel and three dimensional flows. Prog. Aerosp. Sci. 39, 249315 (2003)CrossRefGoogle Scholar
  35. 35.
    Theofilis, V.: Global liniear instability. Annu. Rev. Fluid Mech. 43, 319–352 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Theofilis, V.: The linearized pressure Poisson equation for global instability analysis of incompressible flows. Theor. Comput. Fluid Dyn. 31, 623–642 (2017)CrossRefGoogle Scholar
  37. 37.
    Theofilis, V., Duck, P.W., Owen, J.: Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249–286 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Theofilis, V., Fedorov, A., Obrist, D., Dallman, U.C.: The extended Görtler–Hämmerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow. J. Fluid Mech. 487, 271–313 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Theofilis, V., Stefan, H., Dallmann, U.: On the origins of unsteadiness and three dimensionality in a laminar separation bubble. Proc. R. Soc. A 358, 1777 (2000)zbMATHGoogle Scholar
  40. 40.
    Tutty, O.R., Price, W.G.: Boundary layer flow on a long thin cylinder. Phys. Fluids 14, 628–637 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Vinod, N.: Stability and transition in boundary layers: effect of transverse curvature and pressure gradient. Ph.D. Thesis, Jawaharlal Nehru Center for Advanced Scientific Research (2005)Google Scholar
  42. 42.
    Vinod, N., Govindarajan, R.: Secondary instabilities in incompressible axisymmetric boundary layers: effect of transverse curvature. J. Fliud Eng. 134, 024503 (2012)CrossRefGoogle Scholar
  43. 43.
    Zebib, A.: Stability of viscous flow past a circular cylinder. J. Eng. Math. 21, 155–165 (1987)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyGandhinagarIndia

Personalised recommendations