Theoretical and Computational Fluid Dynamics

, Volume 31, Issue 5–6, pp 471–474 | Cite as

Special issue on global flow instability and control

  • Ati Sharma
  • Vassilis Theofilis
  • Tim Colonius


This special issue is the second on the topic of “Global Flow Instability and Control,” following the first in 2011. As with the previous special issue, the participants of the last two symposia on Global Flow Instability and Control, held in Crete, Greece, were invited to submit publications. These papers were peer reviewed according to the standards of the journal, and this issue represents a snapshot of the progress since 2011. In this preface, a sampling of important developments in the field since the first issue is discussed. A synopsis of the papers in this issue is given in that context.


Global linear instability Flow control Transition Turbulence 


  1. 1.
    Abdessemed, N., Sharma, A.S., Sherwin, S.J., Theofilis, V.: Transient growth analysis of the flow past a circular cylinder. Phys. Fluids 21, 044103 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Åkervik, E., Brandt, L., Henningson, D.S., Hoepffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18(6), 068102 (2006)CrossRefGoogle Scholar
  3. 3.
    Barkley, D.: Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75(5), 750–756 (2006). doi: 10.1209/epl/i2006-10168-7 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Beneddine, S., Sipp, D., Arnault, A., Dandois, J., Lesshafft, L.: Conditions for validity of mean flow stabilityanalysis. J. Fluid Mech. 798, 485–504 (2016). doi: 10.1017/jfm.2016.331 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Blackburn, H.M., Sherwin, S.J., Barkley, D.: Convective instability and transient growth in steady and pulsatile stenotic flows. J. Fluid Mech. (2008). doi: 10.1017/s0022112008001717 zbMATHGoogle Scholar
  6. 6.
    Dalla Longa, L., Morgans, A.S., Dahan, J.A.: Reducing the pressure drag of a D-shaped bluff body using linear feedback control. Theor. Comput. Fluid Dyn. (2017). doi: 10.1007/s00162-017-0420-6 Google Scholar
  7. 7.
    Davies, C., Thomas, C.: Global stability behaviour for the BEK family of rotating boundary layers. Theor. Comput. Fluid Dyn. (2016). doi: 10.1007/s00162-016-0406-9 Google Scholar
  8. 8.
    de Teixeira, R.S., de Alves, L.S.B.: Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers. Theor. Comput. Fluid Dyn. (2017). doi: 10.1007/s00162-017-0426-0 Google Scholar
  9. 9.
    Fabre, D., Tchoufag, J., Citro, V., Giannetti, F., Luchini, P.: The flow past a freely rotating sphere. Theor. Comput. Fluid Dyn. (2016). doi: 10.1007/s00162-016-0405-x Google Scholar
  10. 10.
    Gelfgat, A.Y.: Time-dependent modeling of oscillatory instability of three-dimensional natural convection of air in a laterally heated cubic box. Theor. Comput. Fluid Dyn. 31(4), 447–469 (2017)CrossRefGoogle Scholar
  11. 11.
    Gómez, F., Blackburn, H.M., Rudman, M., Sharma, A.S., McKeon, B.J.: A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. (2016). doi: 10.1017/jfm.2016.339 MathSciNetGoogle Scholar
  12. 12.
    He, W., Gioria, R.S., Pérez, J.M., Theofilis, V.: Linear instability of flow reynolds number in massively separated massively flow around three naca airfoils. J. Fluid Mech. 811, 801–841 (2017)CrossRefGoogle Scholar
  13. 13.
    He, W., Tendero, J.A., Paredes, P., Theofilis, V.: Linear instability in the wake of an elliptic wing. Theor. Comput. Fluid Dyn. (2016). doi: 10.1007/s00162-016-0400-2 Google Scholar
  14. 14.
    Kaiser, E., Noack, B.R., Spohn, A., Cattafesta, L.N., Morzyński, M.: Cluster-based control of a separating flow over a smoothly contoured ramp. Theor. Comput. Fluid Dyn. (2017). doi: 10.1007/s00162-016-0419-4 Google Scholar
  15. 15.
    Luchini, P., Bottaro, A.: Adjoint equations in stability analysis. Ann. Rev. Fluid Mech. 46(1), 493–517 (2014). doi: 10.1146/annurev-fluid-010313-141253 CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Luchini, P., Giannetti, F., Citro, V.: Error sensitivity to refinement: a criterion for optimal grid adaptation. Theor. Comput. Fluid Dyn. (2016). doi: 10.1007/s00162-016-0413-x Google Scholar
  17. 17.
    Malkus, W.V.R.: Outline of a theory of turbulent shear flow. J. Fluid Mech. 1(05), 521 (1956). doi: 10.1017/s0022112056000342 CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mantič-Lugo, V., Arratia, C., Gallaire, F.: Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. (2014). doi: 10.1103/physrevlett.113.084501 Google Scholar
  19. 19.
    Mao, X., Sherwin, S.J., Blackburn, H.M.: Optimal inflow boundary condition perturbations in steady stenotic flow. J. Fluid Mech. 705, 306–321 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Martiín, J.A., Paredes, P.: Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices. Theor. Comput. Fluid Dyn. (2016). doi: 10.1007/s00162-016-0403-z Google Scholar
  21. 21.
    McKeon, B.J., Sharma, A.S.: A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336–382 (2010). doi: 10.1017/s002211201000176x CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45(1), 357–378 (2013). doi: 10.1146/annurev-fluid-011212-140652 CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Mittal, S.: Global linear stability analysis of time-averaged flows. Int. J. Numer. Methods Fluids 58(1), 111–118 (2008). doi: 10.1002/fld.1714 CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pérez, J.M., Aguilar, A., Theofilis, V.: Lattice Boltzmann methods for global linear instability analysis. Theor. Comput. Fluid Dyn. (2017). doi: 10.1007/s00162-016-0416-7 Google Scholar
  25. 25.
    Saglietti, C., Schlatter, P., Monokrousos, A., Henningson, D.S.: Adjoint optimization of natural convection problems: differentially heated cavity. Theor. Comput. Fluid Dyn. (2016). doi: 10.1007/s00162-016-0398-5 Google Scholar
  26. 26.
    Sharma, A., Abdessemed, N., Sherwin, S.J., Theofilis, V.: Transient growth mechanisms of low reynolds number flow over a low-pressure turbine blade. Theor. Comput. Fluid Dyn. 25, 19–30 (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    Sharma, A., Sherwin, S., Abdessemed, N., Limebeer, D.: Global modes of flows in complex geometries. In: Third Symposium on Global Flow Instability and Control, Crete (2005)Google Scholar
  28. 28.
    Sharma, A.S., Abdessemed, N., Sherwin, S., Theofilis, V.: Optimal growth of linear perturbations in low pressure turbine flows. In: IUTAM Bookseries pp. 339–343 (2008). doi: 10.1007/978-1-4020-6858-4_39
  29. 29.
    Sharma, A.S., Mezić, I., McKeon, B.J.: Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations. Phys. Rev. Fluids (2016). doi: 10.1103/physrevfluids.1.032402 Google Scholar
  30. 30.
    Sipp, D., Lebedev, A.: Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. (2007). doi: 10.1017/s0022112007008907 zbMATHGoogle Scholar
  31. 31.
    Sun, Y., Taira, K., Cattafesta III, L.N., Ukeiley, L.S.: Spanwise effects on instabilities of compressible flow over a long rectangular cavity. Theor. Comput. Fluid Dyn. (2016). doi: 10.1007/s00162-016-0412-y Google Scholar
  32. 32.
    Theofilis, V.: The linearized pressure Poisson equation for global instability analysis of incompressible flows. Theor. Comput. Fluid Dyn. (2017). doi: 10.1007/s00162-017-0435-z Google Scholar
  33. 33.
    Towne, A., Schmidt, O.T., Colonius, T.: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. ArXiv e-prints (2017)Google Scholar
  34. 34.
    Turton, S.E., Tuckerman, L.S., Barkley, D.: Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E (2015). doi: 10.1103/physreve.91.043009 MathSciNetGoogle Scholar
  35. 35.
    Zare, A., Jovanović, M.R., Georgiou, T.T.: Colour of turbulence. J. Fluid Mech. 812, 636–680 (2017). doi: 10.1017/jfm.2016.682 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Aerodynamics and Flight MechanicsUniversity of SouthamptonSouthamptonUK
  2. 2.School of EngineeringThe University of LiverpoolLiverpoolUK
  3. 3.Department of Mechanical and Civil EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations