On the need of mode interpolation for data-driven Galerkin models of a transient flow around a sphere

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a low-dimensional Galerkin model with state-dependent modes capturing linear and nonlinear dynamics. Departure point is a direct numerical simulation of the three-dimensional incompressible flow around a sphere at Reynolds numbers 400. This solution starts near the unstable steady Navier–Stokes solution and converges to a periodic limit cycle. The investigated Galerkin models are based on the dynamic mode decomposition (DMD) and derive the dynamical system from first principles, the Navier–Stokes equations. A DMD model with training data from the initial linear transient fails to predict the limit cycle. Conversely, a model from limit-cycle data underpredicts the initial growth rate roughly by a factor 5. Key enablers for uniform accuracy throughout the transient are a continuous mode interpolation between both oscillatory fluctuations and the addition of a shift mode. This interpolated model is shown to capture both the transient growth of the oscillation and the limit cycle.

References

  1. 1.

    Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids (1994-present) 18(6), 068102 (2006)

    Article  Google Scholar 

  2. 2.

    Alekseev, A.K., Bistrian, D.A., Bondarev, A.E., Navon, I.M.: On linear and nonlinear aspects of dynamic mode decomposition. Int. J. Numer. Meth. Fluids (2016). doi:10.1002/fld.4221

  3. 3.

    Aubry, N., Guyonnet, R., Lima, R.: Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64(2/3), 683–739 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Babaee, H., Sapsis, T.P.: A variational principle for the description of time-dependent modes associated with transient instabilities. Phil. Trans. Roy. S. Lond. 472(2186), 20150779 (2016)

  6. 6.

    Bagheri, S., Schlatter, P., Schmid, P.J., Henningson, D.S.: Global stability of a jet in crossflow. J. Fluid Mech. 624, 33–44 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM Math. Model. Numer. Anal. 8(R2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Brunton, S.L., Noack, B.R.: Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67(5), 050801:01–050801:48 (2015)

    Article  Google Scholar 

  9. 9.

    Cacuci, D.G., Navon, I.M., Ionescu-Bujor, M.: Computational Methods for Data Evaluation and Assimilation. Chapman & Hall, Oxford (2013)

    MATH  Google Scholar 

  10. 10.

    Campregher, R., Militzer, J., Mansur, S.S., Silveira, A.: Computations of the flow past a still sphere at moderate reynolds numbers using an immersed boundary method. J. Braz. Soc. Mech. Sci. Eng. 31(4), 344–352 (2009)

    Article  Google Scholar 

  11. 11.

    Cordier, L., Majd, E., Abou, B., Favier, J.: Calibration of POD reduced-order models using Tikhonov regularization. Int. J. Numer. Methods Fluids 63(2), 269–296 (2010)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Deane, A.E., Kevrekidis, I.G., Karniadakis, G.E., Orszag, S.A.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A 3, 2337–2354 (1991)

    Article  MATH  Google Scholar 

  13. 13.

    Fletcher, C.A.J.: Computational Galerkin Methods, 1st edn. Springer, New York (1984)

    Book  MATH  Google Scholar 

  14. 14.

    Galletti, G., Bruneau, C.H., Zannetti, L., Iollo, A.: Low-order modelling of laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503, 161–170 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Glezer, A., Amitay, M., Honohan, A.M.: Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J. 43(7), 1501–1511 (2005)

    Article  Google Scholar 

  16. 16.

    Han, Z.-H., Goertz, S., Zimmermann, R.: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp. Sci. Technol. 25(1), 177–189 (2013)

    Article  Google Scholar 

  17. 17.

    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  18. 18.

    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Johnson, T.A., Patel, V.C.: Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999)

    Article  Google Scholar 

  20. 20.

    Jørgensen, B.H., Sørensen, J.N., Brøns, M.: Low-dimensional modeling of a driven cavity flow with two free parameters. Theor. Comput. Fluid Dyn. 16, 299–317 (2003)

    Article  MATH  Google Scholar 

  21. 21.

    Karypis, G., Kumar, V.: Metis-unstructured graph partitioning and sparse matrix ordering system. University of Minnesota, Minneapolis (1995). http://www.cs.umn.edu/

  22. 22.

    Kiya, M., Ishikawa, H., Sakamoto, H.: Near-wake instabilities and vortex structures of three-dimensional bluff bodies: a review. J. Wind Eng. Ind. Aerodyn. 89(14), 1219–1232 (2001)

    Article  Google Scholar 

  23. 23.

    Kutz, J.N., Fu, X., Brunton, S.L.: Multi-resolution dynamic mode decomposition. arXiv preprint arXiv:1506.00564 (2015)

  24. 24.

    Lehmann, O., Luchtenburg, M., Noack, B.R., King, R., Morzyński, M., Tadmor, G.: Wake stabilization using POD Galerkin models with interpolated modes. In: 44th IEEE Conference on Decision and Control and European Control Conference ECC, Seville, Spain, 12–15 Dec. 2005. Invited Paper MoA15.2 (2005)

  25. 25.

    Luchtenburg, D.M., Günther, B., Noack, B.R., King, R., Tadmor, G.: A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J. Fluid Mech. 623, 283–316 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Magarvey, R.H., Bishop, R.L.: Transition ranges for three-dimensional wakes. Can. J. Phys. 39(10), 1418–1422 (1961)

    Article  Google Scholar 

  27. 27.

    Morzyński, M., Stankiewicz, W., Noack, B.R., King, R., Thiele, F., Tadmor, G.: Continuous mode interpolation for control-oriented models of fluid flow. In: Active Flow Control, pp. 260–278. Springer (2007)

  28. 28.

    Morzyński, M., Thiele, F.: Finite element method for global stability analysis of 3D flows. In: 4th AIAA Flow Control Conference, Seattle, Washington, USA. AIAA Paper 2008–3865 (2008)

  29. 29.

    Natarajan, R., Acrivos, A.: The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323–344 (1993)

    Article  MATH  Google Scholar 

  30. 30.

    Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Noack, B.R., Morzyński, M., Tadmor, G.: Reduced-Order Modelling for Flow Control volume 528 of CISM International Centre for Mechanical Sciences. Springer, Berlin (2011)

    Book  Google Scholar 

  32. 32.

    Noack, B.R., Papas, P., Monkewitz, P.A.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339–365 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Noack, B.R., Stankiewicz, W., Morzynski, M., Schmid, P.J.: Recursive dynamic mode decomposition of a transient cylinder wake. arXiv preprint arXiv:1511.06876 (2015)

  34. 34.

    Protas, J.E., Wesfreid, B.: Drag force in the open-loop control of the cylinder wake in the laminar regime. Phys. Fluids 14(2), 810–826 (2002)

    Article  MATH  Google Scholar 

  35. 35.

    Rempfer, D.: On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14, 75–88 (2000)

    Article  MATH  Google Scholar 

  36. 36.

    Rempfer, D.: Low-dimensional modeling and numerical simulation of transition in simple shear flow. Ann. Rev. Fluid Mech. 35, 229–265 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Rossow, C., Kroll, N.: High performance computing serves aerospace engineering: Opportunities for next generation product development. In: 46th AIAA Aerospace Science Meeting and Exhibit. Reno, USA (2008)

  38. 38.

    Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15(3), 997–1013 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Rowley, C.W., Williams, D.R.: Dynamics and control of high-Reynolds number flows over open cavities. Ann. Rev. Fluid Mech. 38, 251–276 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Sakamoto, H., Haniu, H.: A study on vortex shedding from spheres in a uniform flow. J. Fluids Eng. 112(4), 386–392 (1990)

    Article  Google Scholar 

  42. 42.

    Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656(1), 5–28 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Siegel, S.G., Seidel, J., Fagley, C., Luchtenburg, D.M., Cohen, K., McLaughlin, T.: Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J. Fluid Mech. 610(1), 1–42 (2008)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Sirovich, L.: Turbulence and the dynamics of coherent structures. I-coherent structures. II-symmetries and transformations. III-dynamics and scaling. Q. Appl. Math. 45(3), 561–590 (1987)

    Article  MATH  Google Scholar 

  45. 45.

    Stankiewicz, W., Morzyński, M., Kotecki, K., Roszak, R., Nowak, M.: Modal decomposition-based global stability analysis for reduced order modelling of 2D and 3D wake flows. Int. J. Numer. Methods Fluids 81(3), 178–191 (2016)

    Article  Google Scholar 

  46. 46.

    Stankiewicz, W., Morzyński, M., Roszak, R., Noack, B.R., Tadmor, G.: Reduced order modelling of a flow around an airfoil with a changing angle of attack. Arch. Mech. 60(6), 509–526 (2008)

    MATH  Google Scholar 

  47. 47.

    Stankiewicz, W., Roszak, R., Morzyński, M.: Genetic algorithm-based calibration of reduced order Galerkin models. Math. Model. Anal. 16(2), 233–247 (2011)

    Article  MATH  Google Scholar 

  48. 48.

    Stankiewicz, W., Roszak, R., Morzyński, M., Noack, B.R., Tadmor, G.: Continuous mode interpolation between multiple operating and boundary conditions for reduced order modelling of the flow. AIP Conf. Proc. Am. Inst. Phys. 1389, 94–97 (2011)

    Article  Google Scholar 

  49. 49.

    Stuart, J.T.: Nonlinear stability theory. Ann. Rev. Fluid Mech. 3, 347–370 (1971)

    Article  Google Scholar 

  50. 50.

    Tadmor, G., Gonzalez, J., Lehmann, O., Noack, B.R., Morzyński, M., Stankiewicz, W.: Shift modes and transient dynamics in low order, design oriented Galerkin models. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA. AIAA Paper 2007-0111 (2007)

  51. 51.

    Tadmor, G., Noack, B.R.: Dynamic estimation for reduced Galerkin models of fluid flows. In: The 2004 American Control Conference, pp. 1–6. Boston, MA, U.S.A., June 30–July 2 (2004). Paper WeM18.1 (2004)

  52. 52.

    Taneda, S.: Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Jpn. 11(10), 1104–1108 (1956)

    Article  Google Scholar 

  53. 53.

    Theofilis, V.: Global linear instability. Ann. Rev. Fluid Mech. 43, 319–352 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  54. 54.

    Tomboulides, A.G., Orszag, S.A.: Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 45–73 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  56. 56.

    Uruba, V.: Decomposition methods in turbulence research. In: EPJ Web of Conferences, vol. 25, p. 01095. EDP Sciences (2012)

  57. 57.

    Vukasonivic, B., Rusak, Z., Glezer, A.: Dissipative small-scale actuation of a turbulent shear layer. J. Fluid Mech. 656, 51–81 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Witold Stankiewicz.

Additional information

Communicated by Dr. Oleg V. Vasilyev.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stankiewicz, W., Morzyński, M., Kotecki, K. et al. On the need of mode interpolation for data-driven Galerkin models of a transient flow around a sphere. Theor. Comput. Fluid Dyn. 31, 111–126 (2017). https://doi.org/10.1007/s00162-016-0408-7

Download citation

Keywords

  • Reduced-order modeling (ROM)
  • Galerkin projection
  • Dynamic mode decomposition (DMD)
  • Continuous mode interpolation
  • CFD