Theoretical and Computational Fluid Dynamics

, Volume 31, Issue 1, pp 51–66 | Cite as

Model of non-stationary, inhomogeneous turbulence

  • Andrew D. Bragg
  • Susan Kurien
  • Timothy T. Clark
Original Article


We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1–35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.


Turbulence modeling Inhomogeneous turbulence Two-point modeling Turbulent mixing Non-stationary turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, New York (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Cadiou, A., Hanjalić, K., Stawiarski, K.: A two-scale second-moment turbulence closure based on weighted spectrum integration. Theor. Comput. Fluid Dyn. 18(1), 1–26 (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Schiestel, R.: Multiple-timescale modeling of turbulent flows in one-point closures. Phys. Fluids 30(3), 722–731 (1987)CrossRefMATHGoogle Scholar
  4. 4.
    Clark, T.T., Zemach, C.: Symmetries and the approach to statistical equilibrium in isotropic turbulence. Phys. Fluids 10, 2846–2858 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Clark, T.T.: Modeling Complex Turbulent Flows. chapter Two-Point Closures and Statistical Equilibrium. Springer Netherlands, Dordrecht (1999)Google Scholar
  6. 6.
    Besnard, D.C., Harlow, F.H., Rauenzahn, R.M., Zemach, C.: Spectral transport model for turbulence. Theor. Comput. Fluid Dyn. 8, 1–35 (1996)CrossRefMATHGoogle Scholar
  7. 7.
    Kraichnan, R.H.: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497–543 (1959)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Wyld, H.W., Jr.: Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143–165 (1961)Google Scholar
  9. 9.
    Martin, P.C., Siggia, E.D., Rose, H.A.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973)CrossRefGoogle Scholar
  10. 10.
    McComb, W.D.: A local energy-transfer theory of isotropic turbulence. J. Phys. A Math. Nucl. Gen. 7(5), 632 (1974)CrossRefMATHGoogle Scholar
  11. 11.
    Daly, B., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634 (1970)CrossRefGoogle Scholar
  12. 12.
    Launder, B.E., Reece, G.J., Rodi, W.: Progress in the developments of a Reynolds stress turbulent closure. J. Fluid Mech. 68, 537–566 (1975)CrossRefMATHGoogle Scholar
  13. 13.
    Clark, T.T., Zemach, C.: A spectral model applied to homogeneous turbulence. Phys. Fluids A 7, 1674 (1995)CrossRefMATHGoogle Scholar
  14. 14.
    Veeravalli, S., Warhaft, Z.: The shearless turbulence mixing layer. J. Fluid Mech. 207, 191–229 (1989)CrossRefGoogle Scholar
  15. 15.
    Thormann, A., Meneveau, C.: Decaying turbulence in the presence of a shearless uniform kinetic energy gradient. J. Turbul. 16(5), 442–459 (2015)CrossRefGoogle Scholar
  16. 16.
    Tordella, D., Iovieno, M., Bailey, P.R.: Sufficient condition for Gaussian departure in turbulence. Phys. Rev. E 77, 016309 (2008)CrossRefGoogle Scholar
  17. 17.
    Gilbert, B.: Diffusion mixing in grid turbulence without mean shear. J. Fluid Mech. 100(2), 349–365 (1980)CrossRefGoogle Scholar
  18. 18.
    Rubinstein, R., Kurien, S., Cambon, C.: Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence. J. Turbul. 16(11), 1058–1075 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rubinstein, R., Clark, T.T.: A generalized heisenberg model for turbulent spectral dynamics. Theor. Comput. Fluid Dyn. 17, 249–272 (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Lumley, J.L., Newman, G.R.: Return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161–178 (1977)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10, 1409 (1967)CrossRefGoogle Scholar
  22. 22.
    Clark, T.T., Rubinstein, R., Weinstock, J.: Reassessment of the classical turbulence closures: the Leith diffusion model. J. Turbul. 10, N35 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Eyink, G.L., Aluie, H.: Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21(11), 115107 (2009)CrossRefMATHGoogle Scholar
  24. 24.
    Aluie, H., Eyink, G.L.: Localness of energy cascade in hydrodynamic turbulence. II. sharp spectral filter. Physics of Fluids 21(11), 115108 (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Tordella, D., Iovieno, M.: Small-scale anisotropy in turbulent shearless mixing. Phys. Rev. Lett. 107, 194501 (2011)CrossRefGoogle Scholar
  26. 26.
    Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609 (1972)CrossRefMATHGoogle Scholar
  27. 27.
    Ireland, P.J., Collins, L.R.: Direct numerical simulation of inertial particle entrainment in a shearless mixing layer. J. Fluid Mech. 704(8), 301–332 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  • Andrew D. Bragg
    • 1
  • Susan Kurien
    • 1
  • Timothy T. Clark
    • 2
  1. 1.Applied Mathematics and Plasma Physics GroupLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of Mechanical EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations