Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 30, Issue 4, pp 295–312 | Cite as

The flow external to a rotating torus

  • Sophie A. W. Calabretto
  • James P. Denier
  • Trent W. Mattner
Original Article
  • 190 Downloads

Abstract

Imparting a sudden rotation to a torus (or other symmetric smooth object) in an otherwise quiescent, viscous fluid serves to generate boundary layers at the object’s surface. These boundary layers are known to exhibit a finite-time singularity at the equator which manifests in a thickening of the boundary layer and subsequent development of an equatorial jet. Here we consider the post-collision flow dynamics, demonstrating that the equatorial jet serves to shed a finite amplitude toroidal vortex pair. The radial jet is also shown to develop an absolute instability at suitably high Reynolds numbers.

Keywords

Boundary-layer collision Radial jet Rotating flow Toroidal vortex Absolute instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banks W., Zaturska M.: The collision of unsteady laminar boundary layers. J. Eng. Math. 13, 193–212 (1979)CrossRefzbMATHGoogle Scholar
  2. 2.
    Blackburn H., Sherwin S.: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comp. Phys. 197, 759–778 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boirin, O., Deplano, V., Pelissier, R.: Experimental and numerical studies on the starting effect on the secondary flow in a bend. J. Fluid. Mech. 574, 109–129 (2006)Google Scholar
  4. 4.
    Calabretto, S., Denier, J., Mattner, T.: The unsteady flow due to an impulsively rotated sphere. Proc. R. Soc. A 471, 20150299 (2015a)Google Scholar
  5. 5.
    Calabretto, S., Mattner, T., Denier, J.: The effect of seam imperfections in the spin-up of a fluid-filled torus. J. Fluid. Mech. 767, 240–253 (2015b)Google Scholar
  6. 6.
    Cowley S., van Dommelen L., Lam S.: On the use of lagrangian variables in descriptions of unsteady boundary-layer separation. Phil. Trans. R. Soc. Lond. Ser. A 333, 343–378 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dennis S., Duck P.: Unsteady flow due to an impulsively started rotating sphere. Comput. Fluids 16, 291–310 (1988)CrossRefzbMATHGoogle Scholar
  8. 8.
    del Pino C., Hewitt R., Clarke R., Mullin T., Denier J.: Unsteady fronts in the spin-down of a fluid-filled torus. Phys. Fluids 20(12), 124104 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hewitt R., Hazel A., Clarke R., Denier J.: Unsteady flow in a rotating torus after a sudden change in rotation rate. J. Fluid. Mech. 688, 88–119 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Howarth L.: Note on the boundary layer on a rotating sphere. Philos. Mag. 42, 1308–1315 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kluwick A., Wohlfahrt H.: Hot-wire-anemometer study of the entry flow in a curved duct. J. Fluid. Mech. 165, 335–353 (1986)CrossRefGoogle Scholar
  12. 12.
    Madden F.N., Mullin T.: The spin-up from rest of a fluid-filled torus. J. Fluid. Mech. 265, 217 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Noskov, V., Stepanov, R., Denisov, S., Frick, P., Verhille, V., Pilhon, N., Pinton, J.F.: Dynamics of a turbulent spin-down flow inside a torus. Phys. Fluids 21, 045108–1–045108–7 (2009)Google Scholar
  14. 14.
    Pedley T.: Mathematical modelling of arterial fluid dynamics. J. Eng. Math. 47, 419–444 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Riley N.: Radial jets with swirl. Part I. Incompressible flow. QJMAM 25, 435–458 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Riley N (1998) Unsteady fully-developed flow in a curved pipe. J. Eng. Math. 34, 131–141Google Scholar
  17. 17.
    Simpson C., Stewartson K.: A note on a boundary-layer collision on a rotating sphere. J. Appl. Math. Phys. (ZAMP) 33, 370–378 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stewartson K., Cebeci T., Chang K.: A boundary-layer collision in a curved duct. QJMAM 33(1), 59–75 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    van Dommelen L.L.: On the Lagrangian description of unsteady boundary-layer separation. Part 2. The spinning sphere. J. Fluid. Mech. 210, 627–645 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sophie A. W. Calabretto
    • 1
  • James P. Denier
    • 2
  • Trent W. Mattner
    • 3
  1. 1.Institute for Mechanical SystemsETH ZürichZurichSwitzerland
  2. 2.Department of MathematicsMacquarie UniversitySydneyAustralia
  3. 3.School of Mathematical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations