Theoretical and Computational Fluid Dynamics

, Volume 30, Issue 4, pp 295–312 | Cite as

The flow external to a rotating torus

  • Sophie A. W. Calabretto
  • James P. Denier
  • Trent W. Mattner
Original Article


Imparting a sudden rotation to a torus (or other symmetric smooth object) in an otherwise quiescent, viscous fluid serves to generate boundary layers at the object’s surface. These boundary layers are known to exhibit a finite-time singularity at the equator which manifests in a thickening of the boundary layer and subsequent development of an equatorial jet. Here we consider the post-collision flow dynamics, demonstrating that the equatorial jet serves to shed a finite amplitude toroidal vortex pair. The radial jet is also shown to develop an absolute instability at suitably high Reynolds numbers.


Boundary-layer collision Radial jet Rotating flow Toroidal vortex Absolute instability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks W., Zaturska M.: The collision of unsteady laminar boundary layers. J. Eng. Math. 13, 193–212 (1979)CrossRefzbMATHGoogle Scholar
  2. 2.
    Blackburn H., Sherwin S.: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comp. Phys. 197, 759–778 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boirin, O., Deplano, V., Pelissier, R.: Experimental and numerical studies on the starting effect on the secondary flow in a bend. J. Fluid. Mech. 574, 109–129 (2006)Google Scholar
  4. 4.
    Calabretto, S., Denier, J., Mattner, T.: The unsteady flow due to an impulsively rotated sphere. Proc. R. Soc. A 471, 20150299 (2015a)Google Scholar
  5. 5.
    Calabretto, S., Mattner, T., Denier, J.: The effect of seam imperfections in the spin-up of a fluid-filled torus. J. Fluid. Mech. 767, 240–253 (2015b)Google Scholar
  6. 6.
    Cowley S., van Dommelen L., Lam S.: On the use of lagrangian variables in descriptions of unsteady boundary-layer separation. Phil. Trans. R. Soc. Lond. Ser. A 333, 343–378 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dennis S., Duck P.: Unsteady flow due to an impulsively started rotating sphere. Comput. Fluids 16, 291–310 (1988)CrossRefzbMATHGoogle Scholar
  8. 8.
    del Pino C., Hewitt R., Clarke R., Mullin T., Denier J.: Unsteady fronts in the spin-down of a fluid-filled torus. Phys. Fluids 20(12), 124104 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hewitt R., Hazel A., Clarke R., Denier J.: Unsteady flow in a rotating torus after a sudden change in rotation rate. J. Fluid. Mech. 688, 88–119 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Howarth L.: Note on the boundary layer on a rotating sphere. Philos. Mag. 42, 1308–1315 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kluwick A., Wohlfahrt H.: Hot-wire-anemometer study of the entry flow in a curved duct. J. Fluid. Mech. 165, 335–353 (1986)CrossRefGoogle Scholar
  12. 12.
    Madden F.N., Mullin T.: The spin-up from rest of a fluid-filled torus. J. Fluid. Mech. 265, 217 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Noskov, V., Stepanov, R., Denisov, S., Frick, P., Verhille, V., Pilhon, N., Pinton, J.F.: Dynamics of a turbulent spin-down flow inside a torus. Phys. Fluids 21, 045108–1–045108–7 (2009)Google Scholar
  14. 14.
    Pedley T.: Mathematical modelling of arterial fluid dynamics. J. Eng. Math. 47, 419–444 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Riley N.: Radial jets with swirl. Part I. Incompressible flow. QJMAM 25, 435–458 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Riley N (1998) Unsteady fully-developed flow in a curved pipe. J. Eng. Math. 34, 131–141Google Scholar
  17. 17.
    Simpson C., Stewartson K.: A note on a boundary-layer collision on a rotating sphere. J. Appl. Math. Phys. (ZAMP) 33, 370–378 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stewartson K., Cebeci T., Chang K.: A boundary-layer collision in a curved duct. QJMAM 33(1), 59–75 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    van Dommelen L.L.: On the Lagrangian description of unsteady boundary-layer separation. Part 2. The spinning sphere. J. Fluid. Mech. 210, 627–645 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sophie A. W. Calabretto
    • 1
  • James P. Denier
    • 2
  • Trent W. Mattner
    • 3
  1. 1.Institute for Mechanical SystemsETH ZürichZurichSwitzerland
  2. 2.Department of MathematicsMacquarie UniversitySydneyAustralia
  3. 3.School of Mathematical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations