Theoretical and Computational Fluid Dynamics

, Volume 28, Issue 4, pp 385–408 | Cite as

A comparative study of sound generation by laminar, combusting and non-combusting jet flows

  • Mohsen Talei
  • Michael J. Brear
  • Evatt R. Hawkes
Original Article


Sound production by two-dimensional, laminar jet flows with and without combustion is studied numerically and theoretically. The compressible Navier–Stokes, energy and progress variable equations are solved by resolving both the near field and the acoustics. The combusting jet flows are compared to non-combusting jets of the same jet Mach number, with the non-combusting, non-isothermal jets having the same steady temperature difference as the combusting jets. This infers that the magnitude of entropic and density disturbances is similar in some of the combusting and non-combusting cases. The flows are perturbed by a sinusoidal inlet velocity fluctuation at different Strouhal numbers. The computational domain is resolved to the far field in all cases, allowing direct examination of the sound radiated and its sources. Lighthill’s acoustic analogy is then solved numerically using Green’s functions. The radiated sound calculated using Lighthill’s equation is in good agreement with that from the simulations for all cases, validating the numerical solution of Lighthill’s equation. The contribution of the source terms in Dowling’s reformulation of Lighthill’s equation is then investigated. It is shown that the source term relating to changes in the momentum of density inhomogeneities is the dominant source term for all non-reacting, non-isothermal cases. Further, this source term has similar magnitude in the combusting cases and is one of the several source terms that have similar magnitude to the source term involving fluctuations in the heat release rate.


Premixed Combustion Flame Direct numerical simulation Sound generation Combustion instability Annihilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baum, M.: Etude de l’allumage et de la structure des flammes turbulentes. Ph.D. thesis, Ecole Centrale Paris (1994)Google Scholar
  2. 2.
    Bodony D.J., Lele S.K.: On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17, 1–20 (2005)Google Scholar
  3. 3.
    Bourlioux A., Cuenot B., Poinsot T.: Asymptotic and numerical study of the stabilization of diffusion flames by hot gas. Combust. Flame 120(1–2), 143–159 (2000)CrossRefGoogle Scholar
  4. 4.
    Brear M.J., Nicoud F., Talei M., Giauque A., Hawkes E.R.: Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 53–73 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bui T.P., Schröder W., Meinke M.: Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Comput. Fluids 37(9), 1157–1169 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Candel S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)CrossRefGoogle Scholar
  7. 7.
    Candel S., Durox D., Ducruix S., Birbaud A.L., Noiray N., Schuller T.: Flame dynamics and combustion noise: progress and challenges. Int. J. Aeroacoust. 8(1&2), 1–56 (2009)CrossRefGoogle Scholar
  8. 8.
    Candel, S., Durox, D., Schuller, T.: Flame interactions as a source of noise and combustion instabilities. In: 10th AIAA/CEAS Aeroacoustics Conference, Paper number: 2004-2928, 2004-2928, pp. 1444–1454 (2004)Google Scholar
  9. 9.
    Chiu H.H., Summerfield M.: Theory of combustion noise. Acta Astronaut. 1(7–8), 967–984 (1974)CrossRefGoogle Scholar
  10. 10.
    Clavin P., Siggia E.D.: Turbulent premixed flames and sound generation. Combust. Sci. Technol. 78, 147–155 (1991)CrossRefGoogle Scholar
  11. 11.
    Colonius T., Lele S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)CrossRefGoogle Scholar
  12. 12.
    Colonius T., Lele S.K., Moin P.: Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Corjon, A., Poinsot, T.: A model to define aircraft separations due to wake vortex encounter. In: 13th AIAA Applied Aerodynamics Conference. AIAA paper 95-1776, pp. 117–124 (1995)Google Scholar
  14. 14.
    Corjon A., Poinsot T.: Behavior of wake vortices near ground. AIAA J. 35(5), 849–855 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M., Leppington, F.G., Bartram, J.F.: Modern Methods in Analytical Acoustics Lecture Notes (1992)Google Scholar
  16. 16.
    Cuenot, B., Bedet, B., Corjon, A.: NTMIX3D User’s Guide Manual, Preliminary Version 1.0 (1997)Google Scholar
  17. 17.
    Doak P.E.: Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noise 1. J. Sound Vib. 25(2), 263–335 (1972)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dowling A.P.: Modern Methods in Analytical Acoustics, Chap. Thermoacoustic Sources and Instabilities, pp. 378–403. Springer, Berlin (1992)Google Scholar
  19. 19.
    Dowling A.P., Stow S.R.: Acoustic analysis of gas turbine combustors. J. Propuls. Power 19(5), 751–764 (2003)CrossRefGoogle Scholar
  20. 20.
    Duffy D.G.: Green’s Functions with Applications. Chapman & Hall/CRC, London (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ffowcs Williams J.E., Hawking D.L.: Sound generated by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. A 264, 321–342 (1969)CrossRefzbMATHGoogle Scholar
  22. 22.
    Freund J.B.: Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277–305 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Goldstein M.E.: Aeroacoustics of turbulent shear flows. Ann. Rev. Fluid Mech. 16, 263–285 (1984)CrossRefGoogle Scholar
  24. 24.
    Goldstein M.E.: A generalized acoustic analogy. J. Fluid Mech. 488, 315–333 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Hassan H.A.: Scaling of combustion-generated noise. J. Fluid Mech. 66(3), 445–453 (1974)CrossRefzbMATHGoogle Scholar
  26. 26.
    Hirsch C., Wäsle J., Winkler A., Sattelmayer T.: A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31(1), 1435–1441 (2007)CrossRefGoogle Scholar
  27. 27.
    Howe M.S.: Acoustics of Fluid-Structure Interactions. Cambridge University Press, Cambridge, MA (1998)CrossRefzbMATHGoogle Scholar
  28. 28.
    Hurle I.R., Price R.B., Sugden T.M., Thomas A.: Sound emission from open turbulent premixed flames. Proc. R. Soc. 303(1475), 409–427 (1968)CrossRefGoogle Scholar
  29. 29.
    Ihme M., Pitsch H.: On the generation of direct combustion noise in turbulent non-premixed flames. Int. J. Aeroacoust. 11(1), 25–78 (2012)CrossRefGoogle Scholar
  30. 30.
    Ihme M., Pitsch H., Bodony D.J.: Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32(1), 1545–1553 (2009)CrossRefGoogle Scholar
  31. 31.
    Jiang X., Avital E.J., Luo K.H.: Direct computation and aeroacoustic modelling of a subsonic axisymmetric jet. J. Sound Vib. 270, 528–538 (2004)CrossRefGoogle Scholar
  32. 32.
    Karimi N., Brear M.J., Jin S.H., Monty J.P.: Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame 156(11), 2201–2212 (2009)CrossRefGoogle Scholar
  33. 33.
    Kidin, N., Librovich, V., Macquisten, M., Roberts, J., Vuillermoz, M.: Possible acoustic source in turbulent combustion. Dyn. React. Syst. Part 1 Flames 336–348 (1988)Google Scholar
  34. 34.
    Kidin, N., Librovich, V., Roberts, J., Vuillermoz, M.: On sound sources in turbulent combustion. In: Dynamics of Flames and Reactive Systems, pp. 343–355 (1984)Google Scholar
  35. 35.
    Lieuwen T.: Modeling premixed combustion-acoustic wave interactions: a review. J. Propuls. Power 19(5), 765–781 (2003)CrossRefGoogle Scholar
  36. 36.
    Lieuwen, T., Yang, V. (eds.): Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling. vol. 210, Prog. Astronaut. Aeronaut. AIAA (2006)Google Scholar
  37. 37.
    Lighthill M.J.: On sound generation aerodynamically I. General theory. Proc. R. Soc. 211, 564–587 (1951)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Lilley, G.M.: On the noise from air jets, in Noise Mechanisms. AGARD. CP. 131, 13.1–13.12 (1973)Google Scholar
  39. 39.
    Lodato G., Domingo P., Vervisch L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(10), 5105–5143 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Moore P., Slot H., Boersma B.J.: Investigation of the behavior of noise sources in heated jets. Adv. Turbul. XI, 395–397 (2007)Google Scholar
  41. 41.
    Morfey C.L.: Amplification of aerodynamic noise by convected flow inhomogeneities. J. Sound Vib. 31(4), 391–397 (1973)CrossRefGoogle Scholar
  42. 42.
    Morfey C.L., Wright M.C.M.: Extensions of Lighthill’s acoustic analogy with application to computational aeroacoustics. Proc. R. Soc. A Math. Phy. 463(2085), 2101–2127 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Myers M.K.: Transport of energy by disturbances in arbitrary steady flows. J. Fluid Mech. 226, 383–400 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Phillips O.M.: On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9, 1–25 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Poinsot T., Veynante D.: Theoretical and Numerical Combustion 2nd edn. RT Edwards Inc., Philadelphia (2005)Google Scholar
  46. 46.
    Poinsot T.J., Lele S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Schuller T., Durox D., Candel S.: Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combust. Flame 128(1–2), 88–110 (2002)CrossRefGoogle Scholar
  48. 48.
    Schuller T., Durox D., Candel S.: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135(4), 525–537 (2003)CrossRefGoogle Scholar
  49. 49.
    Schwarz A., Janicka J. (eds): Combustion Noise. Springer, Berlin (2009)Google Scholar
  50. 50.
    Smith M.J.T.: Aircraft Noise. Cambridge University Press, Cambridge, MA (2004)Google Scholar
  51. 51.
    Strahle W.C.: On combustion generated noise. J. Fluid Mech. 49(2), 399–414 (1971)CrossRefzbMATHGoogle Scholar
  52. 52.
    Strahle W.C.: Some results in combustion generated noise. J. Sound Vib. 23(1), 113–125 (1972)CrossRefGoogle Scholar
  53. 53.
    Strahle W.C.: Combustion noise. Prog. Energy Combust. 4, 157–176 (1978)CrossRefGoogle Scholar
  54. 54.
    Talei M., Brear M.J., Hawkes E.R.: Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194–218 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Talei M., Brear M.J., Hawkes E.R.: A parametric study of sound generation by laminar premixed flame annihilation. Combust. Flame 159(2), 757–769 (2012)CrossRefGoogle Scholar
  56. 56.
    Talei M., Hawkes E.R., Brear M.J.: A direct numerical simulation study of frequency and Lewis number effects on sound generation by two-dimensional forced laminar premixed flames. Proc. Combust. Inst. 34(2), 1093–1100 (2013)CrossRefGoogle Scholar
  57. 57.
    Torregrosa A.J., Broatch A., Martín J., Monelletta L.: Combustion noise level assessment in direct injection diesel engines by means of in-cylinder pressure components. Meas. Sci. Technol. 18, 2131–2142 (2007)CrossRefGoogle Scholar
  58. 58.
    Yoo C., Wang Y., Trouvé A., Im H.: Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theory Model. 9(4), 617–646 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Yoo C.S., Im H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theory Model. 11(2), 259–286 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Zhao W., Frankel S.H.: Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Phys. Fluids 13, 2671–2681 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohsen Talei
    • 1
  • Michael J. Brear
    • 1
  • Evatt R. Hawkes
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of MelbourneParkvilleAustralia
  2. 2.School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyAustralia
  3. 3.School of Photovoltaic and Renewable Energy EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations