Theoretical and Computational Fluid Dynamics

, Volume 28, Issue 2, pp 197–213 | Cite as

Eulerian–Lagrangian bridge for the energy and dissipation spectra in isotropic turbulence

  • F. Lucci
  • V. S. L’vov
  • A. Ferrante
  • M. Rosso
  • S. Elghobashi
Original Article


We study, numerically and analytically, the relationship between the Eulerian spectrum of kinetic energy, E E(k, t), in isotropic turbulence and the corresponding Lagrangian frequency energy spectrum, E L(ω, t), for which we derive an evolution equation. Our DNS results show that not only E L(ω, t) but also the Lagrangian frequency spectrum of the dissipation rate \({\varepsilon_{\rm L} (\omega, t)}\) has its maximum at low frequencies (about the turnover frequency of energy-containing eddies) and decays exponentially at large frequencies ω (about a half of the Kolmogorov microscale frequency) for both stationary and decaying isotropic turbulence. Our main analytical result is the derivation of equations that bridge the Eulerian and Lagrangian spectra and allow the determination of the Lagrangian spectrum, E L (ω) for a given Eulerian spectrum, E E (k), as well as the Lagrangian dissipation, \({\varepsilon_{\rm L}(\omega)}\), for a given Eulerian counterpart, \({\varepsilon_{\rm E} (k)=2\nu k^2 E_{\rm E}(k)}\). These equations were derived from the Navier–Stokes equations in the sweeping-free coordinate system (intermediate between the Eulerian and Lagrangian frameworks) which eliminates the effect of the kinematic sweeping of the small eddies by the larger eddies. We show that both analytical relationships between E L (ω) and E E (k) and between \({\varepsilon_{\rm L} (\omega)}\) and \({\varepsilon_{\rm E} (k)}\) are in very good quantitative agreement with our DNS results and explain how \({\varepsilon_{\rm L} (\omega, t)}\) has its maximum at low frequencies and decays exponentially at large frequencies.


Eulerian-Lagrangian-bridge Isotropic turbulence Spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batchelor G.K.: Diffusion in a field of homogeneous turbulence. ii. The relative motion of particles. Proc. Camb. Philos. Soc. 48, 345–362 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Belinicher V.I., L’vov V.S.: A scale-invariant theory of developed hydrodynamic turbulence. Sov. Phys. JETP 93, 1269–1280 (1987)Google Scholar
  3. 3.
    Benzi R., Biferale L., Fisher R., Lamb D.Q., Toschi F.: Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence. J. Fluid Mech. 653, 221–224 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Corrsin S.: Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci. 20, 115–119 (1963)CrossRefGoogle Scholar
  5. 5.
    Ferrante, A.: Reduction of Skin Friction in a Microbubble-Laden Spatially-Developing Turbulent Boundary Layer Over a Flat Plate. Ph.D. Thesis. University of California, Irvine (2004)Google Scholar
  6. 6.
    Gkioulekas E.: On the elimination of the sweeping interactions from theories of hydrodynamic turbulence. Physica D 226, 151–172 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hinze J.O.: Turbulence. McGraw-Hill, New York (1975)Google Scholar
  8. 8.
    Khan M.A.I., Vassilicos J.C.: A new Eulerian–Lagrangian length-scale in turbulent flows. Phys. Fluids 16, 216–218 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kolmogorov, A.N.: The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 303–313; reprinted in Proc. R. Soc. Lond. A 434, 9–13 (1991), 1941Google Scholar
  10. 10.
    Kraichnan R.H.: The structure of isotropic turbulence at very high Reynolds number. J. Fluid Mech. 5, 497–543 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kraichnan, R.H.: Lagrangian-history closure approximation for turbulence. Phys. Fluids 20, 575–598 (1965) (and erratum 9, 1966, 1884)Google Scholar
  12. 12.
    Kraichnan R.H.: Eulerian and Lagrangian renormalization in turbulence theory. J. Fluid Mech. 83, 349–374 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lucci F., Ferrante A., Elghobashi S.: Modulation of isotropic turbulence by particles of Taylor-lengthscale size. J. Fluid Mech. 650, 5–55 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lundgren T.S.: Linearly forced isotropic turbulence, pp. 461–473. Annual Research Briefs, Center for Turbulence Research, Stanford (2003)Google Scholar
  15. 15.
    L’vov V.S., Procaccia I.: Exact resummations in the theory of hydrodynamic turbulence: I. The ball of locality and normal scaling. Phys. Rev. E 52, 3840–3857 (1995)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Martin P.C., Siggia E.D., Rose H.A.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973)CrossRefGoogle Scholar
  17. 17.
    Monin A.S.: The theory of locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 125, 515–518 (1959)MathSciNetGoogle Scholar
  18. 18.
    Pope, S.B.: Turbulent Flows. Cambridge Univ Press (2000)Google Scholar
  19. 19.
    Richardson L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709–737 (1926)CrossRefGoogle Scholar
  20. 20.
    Taylor G.I.: Diffusion by continuous movement. Proc. Lond. Math. Soc. A 20, 196 (1921)zbMATHGoogle Scholar
  21. 21.
    Tennekes H.: Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561–567 (1975)CrossRefzbMATHGoogle Scholar
  22. 22.
    Tennekes H., Lumley J.L.: A First Course in Turbulence. The MIT Press, Cambridge, MA (1972)Google Scholar
  23. 23.
    Wyld H.W.: Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143–165 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Yeung P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115–142 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. Lucci
    • 1
    • 2
  • V. S. L’vov
    • 3
  • A. Ferrante
    • 4
  • M. Rosso
    • 5
  • S. Elghobashi
    • 5
  1. 1.Aerothermochemistry and Combustion Systems LaboratoryETHZürichSwitzerland
  2. 2.Laboratory for I.C. Engines, EMPADübendorfSwitzerland
  3. 3.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  4. 4.William E. Boeing Department of Aeronautics and AstronauticsUniversity of WashingtonSeattleUSA
  5. 5.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations