Theoretical and Computational Fluid Dynamics

, Volume 28, Issue 1, pp 51–63 | Cite as

Density–velocity equations with bulk modulus for computational hydro-acoustics

Original Article
  • 415 Downloads

Abstract

This paper reports a new set of model equations for Computational Hydro Acoustics (CHA). The governing equations include the continuity and the momentum equations. The definition of bulk modulus is used to relate density with pressure. For 3D flow fields, there are four equations with density and velocity components as the unknowns. The inviscid equations are proved to be hyperbolic because an arbitrary linear combination of the three Jacobian matrices is diagonalizable and has a real spectrum. The left and right eigenvector matrices are explicitly derived. Moreover, an analytical form of the Riemann invariants are derived. The model equations are indeed suitable for modeling wave propagation in low-speed, nearly incompressible air and water flows. To demonstrate the capability of the new formulation, we use the CESE method to solve the 2D equations for aeolian tones generated by air flows passing a circular cylinder at Re = 89,000, 46,000, and 22,000. Numerical results compare well with previously published data. By simply changing the value of the bulk modulus, the same code is then used to calculate three cases of water flows passing a cylinder at Re = 89,000, 67,000, and 44,000.

Keywords

Computational hydro-acoustics (CHA) Bulk modulus Hyperbolicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guide for the verification and validation of computational fluid dynamics simulations. AIAA J. AIAA G-077-1998 (1998). ISBN: 978-1-56347-354-8Google Scholar
  2. 2.
    Boudet, J., Casalino, D., Jacob, M., Ferrand, P.: Prediction of sound radiated by a rod using large eddy simulation. In: AIAA paper 2003-3217. Hilton Head Island, South Carolina (2003)Google Scholar
  3. 3.
    Brentner, K.S.: Prediction of helicopter rotor discrete frequency noise: a computer program incorporating realistic blade motions and advanced acoustic formulation. Technical report TM-87721, NASA Langley Research Center (1986)Google Scholar
  4. 4.
    Brentner, K.S., Cox, J.S., Rumsey, C.L., Younis, B.: Computation of sound generated by flow over a vircular cylinder: an acoustic analogy approach. In: Second Computational Aeroacoustics Workshop on Benchmark Problems. Tallahassee, FL (1996)Google Scholar
  5. 5.
    Cai, M.: Acousto-plastic deformation of metals by nonlinear stress waves. PhD dissertation. The Ohio State University (2006)Google Scholar
  6. 6.
    Casalino D., Jacob M.: Prediction of aerodynamic sound from circular rods via spanwise statistical modelling. J. Sound Vib. 262(4), 815–844 (2003)CrossRefGoogle Scholar
  7. 7.
    Chang C.L., Choudhari M.M.: Hypersonic viscous flow over large roughness elements. Theor. Comput. Fluid Dyn. 25(1–4), 85–104 (2010)Google Scholar
  8. 8.
    Chang, S., Loh, C., Yu, S.: Computational aeroacoustics via a new global conservation scheme. In: Fifteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 490, p. 159. Springer (1996)Google Scholar
  9. 9.
    Chang S.C.: The method of space-time conservation element and solution element – a new approach for solving the navier-stokes and euler equations. J. Comput. Phys. 119(2), 295–324 (1995)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chang, S.C., Wang, X.Y.: Multi-dimensional courant number insensitive CE/SE euler solvers for applications involving highly nonuniform meshes. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama (2003)Google Scholar
  11. 11.
    Chen Y.Y., Yang L., Yu S.T.J.: Simulations of waves in elastic solids of cubic symmetry by the conservation element and solution element method. Wave Motion 48(1), 39–61 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chen Y.Y., Yang L., Yu S.T.J.: Hyperbolicity of velocity-stress equations for waves in anisotropic elastic solids. J. Elast. 106(2), 149–164 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cheong C., Joseph P., Park Y., Lee S.: Computation of aeolian tone from a circular cylinder using source models. Appl. Acoust. 69(2), 110–126 (2008)CrossRefGoogle Scholar
  14. 14.
    Colonius T., Lele S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)CrossRefGoogle Scholar
  15. 15.
    Cox J.S., Brentner K.S., Rumsey C.L.: Computation of vortex shedding and radiated sound for a circular cylinder: Subcritical to transcritical reynolds numbers. Theor. Comput. Fluid Dyn. 12(4), 233–253 (1998)CrossRefMATHGoogle Scholar
  16. 16.
    Doolan C.J.: Computational bluff body aerodynamic noise prediction using a statistical approach. Appl. Acoust. 71(12), 1194–1203 (2010)CrossRefGoogle Scholar
  17. 17.
    Gloerfelt X., Pérot F., Bailly C., Juvé D.: Flow-induced cylinder noise formulated as a diffraction problem for low mach numbers. J. Sound Vib. 287(1-2), 129–151 (2005)CrossRefGoogle Scholar
  18. 18.
    Guo Y., Hsu A.T., Wu J., Yang Z., Oyediran A.: Extension of CE/SE method to 2D viscous flows. Comput. Fluids 33(10), 1346–1361 (2004)CrossRefGoogle Scholar
  19. 19.
    Inoue O., Hatakeyama N.: Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471, 285–314 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Jacob M.C., Boudet J., Casalino D., Michard M.: A rod-airfoil experiment as a benchmark for broadband noise modeling. Theor. Comput. Fluid Dyn. 19(3), 171–196 (2005)CrossRefMATHGoogle Scholar
  21. 21.
    Jorgenson, P.C., Loh, C.Y.: Computing axisymmetric jet screech tones using unstructured grids. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA-2002-3889, Indianapolis IN (2002)Google Scholar
  22. 22.
    Kim C.K., Yu S.T.J., Zhang Z.C.: Cavity flow in scramjet engine by space-time conservation and solution element method.. AIAA J. 42(5), 912–919 (2004)CrossRefGoogle Scholar
  23. 23.
    Loh C., Hultgren L., Chang S.: Wave computation in compressible flow using space-time conservation element and solution element method. AIAA J. 39(5), 794–801 (2001)CrossRefGoogle Scholar
  24. 24.
    Loh, C.Y.: Computational aeroacoustics by the space-time CE/SE method. In: Second Aeroacoustics Workshop of Germany (SWING). NASA/CR-2001-210680, Braunschweig, Germany (2000)Google Scholar
  25. 25.
    Loh, C.Y.: Near field trailing edge tone noise computation. In: 41th AIAA Aerospace Sciences Meeting. AIAA-2003-0365, Reno, NV (2003)Google Scholar
  26. 26.
    Loh, C.Y.: Nonlinear aeroacoustics computations by the CE/SE method. Contemp. Math. 379, 135–154 (2005)Google Scholar
  27. 27.
    Loh, C.Y., Chang, S.C., Wang, X.Y., Jorgenson, P.C.: GAP noise computation by the CE/SE method. In: ASME 2001 Fluid Engineering Division Summer Meeting. FEDSM-2001-18136, New Orleans, LA (2001)Google Scholar
  28. 28.
    Loh, C.Y., Hultgren, L.S.: A 3-d CE/SE navier-stokes solver with unstructured hexahedral grid for computation of near field jet screech noise. In: 9th AIAA/CEAS Aeroacoustics Conference. AIAA-2003-3207, Hilton Head, SC (2003)Google Scholar
  29. 29.
    Loh C.Y., Hultgren L.S.: Jet screech noise computation. AIAA J. 44(5), 992–998 (2006)CrossRefGoogle Scholar
  30. 30.
    Loh, C.Y., Hultgren, L.S., Chang, S.C., Jorgenson, P.C.: Noise computation of a shock-containing supersonic axisymmetric jet by the CE/SE method. In: 38th AIAA Aerospace Sciences Meeting. AIAA Paper 2000-0475, Reno, NV (2000)Google Scholar
  31. 31.
    Loh, C.Y., Wang, X.Y., Chang, S.C., Jorgenson, P.C.: Computation of feedback aeroacoustic system by the CE/SE method. In: First International Conference on Computational Fluid Dynamics. NASA, Kyoto, Japan (2000)Google Scholar
  32. 32.
    Loh, C.Y., Zaman, K.: Numerical investigation of ‘Transonic resonance’ with a convergent-divergent nozzle. In: 40th AIAA Aerospace Science Meeting. AIAA-2002-0077, Reno, NV (2002)Google Scholar
  33. 33.
    Mittal R., Balachandar S.: Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Phys. Fluids 7(8), 1841–1865 (1995)CrossRefGoogle Scholar
  34. 34.
    Müller B.: High order numerical simulation of aeolian tones. Comput. Fluids 37(4), 450–462 (2008)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Oberkampf W.L., Trucano T.G.: Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 38(3), 209–272 (2002)CrossRefGoogle Scholar
  36. 36.
    Qin J.R., Yu S.T.J., Lai M.C.: Direct calculations of cavitating flows in fuel delivery pipe by the space-time CESE method. J. Fuels Lubr. SAE Trans. 108, 1720–1725 (2001)Google Scholar
  37. 37.
    Revell, J., Prydz, R., Hays, A.: Experimental study of airframe noise vs. drag relationship for circular crlinders. Technical Report, Lockheed Report 28074, NAS1-14403, NASA (1977)Google Scholar
  38. 38.
    Schlichting, H.: Boundary-Layer Theory, 7 edn. McGraw-Hill, New York (1979)Google Scholar
  39. 39.
    Seo J.H., Moon Y.J.: Linearized perturbed compressible equations for low mach number aeroacoustics. J. Comput. Phys. 218(2), 702–719 (2006)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Seo J.H., Moon Y.J.: Aerodynamic noise prediction for long-span bodies. J. Sound Vib. 306(3-5), 564–579 (2007)CrossRefGoogle Scholar
  41. 41.
    Seol H., Jung B., Suh J.C., Lee S.: Prediction of non-cavitating underwater propeller noise. J. Sound Vib. 275(1), 131–156 (2002)CrossRefGoogle Scholar
  42. 42.
    Tam, C.K.W.: Computational aeroacoustics: issues and methods. AIAA J. 33(10), 1788-1796 (1995)Google Scholar
  43. 43.
    Wang B., He H., Yu S.T.J.: Direct calculation of wave implosion for detonation initiation. AIAA J. 43(10), 2157–2169 (2005)CrossRefGoogle Scholar
  44. 44.
    Wang M., Freund J.B., Lele S.K.: Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483–512 (2006)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Wang X.Y., Chang S.C.: A 2D non-splitting unstructured triangular mesh euler solver based on the space-time conservation element and solution element method. Comput. Fluid Dyn. J. 8(2), 309–325 (1999)Google Scholar
  46. 46.
    Warming R.F., Beam R.M., Hyett B.J.: Diagonalization and simultaneous symmetrization of the gas-dynamic matrices. Math. Comput. 29(132), 1037–1045 (1975)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Williams J.F., Hawkings D.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 264(1151), 321–342 (1969)CrossRefMATHGoogle Scholar
  48. 48.
    Yang, L., Chen, Y.Y., Yu, S.T.J.: Viscoelasticity determined by measured wave absorption coefficient for modeling waves in soft tissues. Wave Motion 50(2), 334–346 (2013). doi:10.1016/j.wavemoti.2012.09.002 Google Scholar
  49. 49.
    Yang L., Chen Y.Y., Yu S.T.J.: Eigen structure of first-order velocity-stress equations for waves in elastic solids of trigonal 32 symmetry. ASME J. Appl. Mech. 77(6), 061,003 (2010)CrossRefGoogle Scholar
  50. 50.
    Yang L., Chen Y.Y., Yu S.T.J.: Velocity-stress equations for waves in solids of hexagonal symmetry solved by the space-time CESE method. ASME J. Vib. Acoust. 133(2), 021,001 (2011)CrossRefGoogle Scholar
  51. 51.
    Yang L., Lowe R.L., Yu S.T.J., Bechtel S.E.: Numerical solution by the CESE method of a first-order hyperbolic form of the equations of dynamic nonlinear elasticity. ASME J. Vib. Acoust. 132(5), 051,003 (2010)CrossRefGoogle Scholar
  52. 52.
    Yu S.T.J., Yang L., He H.: First-order hyperbolic form of velocity-stress equations for waves in elastic solids with hexagonal symmetry. Int. J. Solids Struct. 47(9), 1108–1117 (2010)CrossRefMATHGoogle Scholar
  53. 53.
    Yu S.T.J., Yang L., Lowe R.L., Bechtel S.E.: Numerical simulation of linear and nonlinear waves in hypoelastic solids by the CESE method. Wave Motion 47(3), 168–182 (2010)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Zdravkovich M.M.: Flow Around Circular Cylinder vol. 1: Fundamentals. Oxford University Press, Oxford (1997)Google Scholar
  55. 55.
    Zhang M., Yu S.T.J., Lin S.C., Chang S.C., Blankson I.: Solving magnetohydrodynamic equations without special treatment for divergence-free magnetic field. AIAA J. 42(12), 2605–2608 (2004)CrossRefGoogle Scholar
  56. 56.
    Zhang M., Yu S.T.J., Lin S.C.H., Chang S.C., Blankson I.: Solving the MHD equations by the space-time conservation element and solution element method. J. Comput. Phys. 214(2), 599–617 (2006)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Zhang Z.C., Yu S.T.J., Chang S.C.: A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady euler equations using quadrilateral and hexahedral meshes. J. Comput. Phys. 175(1), 168–199 (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations