POD-spectral decomposition for fluid flow analysis and model reduction


We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1

    Cao Y., Zhu J., Navon I.M., Luo Z.: A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int. J. Num. Methods Fluids 53(10), 1571–1583 (2007)

  2. 2

    Fang F., Pain C.C., Navon I.M., Piggott M.D., Gorman G.J., Goddard A.J.H.: Reduced order modelling of an adaptive mesh ocean model. Int. J. Num. Methods Fluids 59(8), 827–851 (2009)

  3. 3

    Bergmann M., Cordier L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J. Comput. Phys. 227(16), 7813–7840 (2008)

  4. 4

    Holmes P., Lumley J.L., Berkooz G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

  5. 5

    Moin P., Moser R.: Characteristic eddy decomposition of turbulence in a channel. J. Fluid Mech. 200, 471–509 (1989)

  6. 6

    Sirovich L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. XLV, 561–590 (1987)

  7. 7

    Berkooz G., Holmes P., Lumley J.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid. Mech. 25, 539–575 (1993)

  8. 8

    Rowley, C., Mezic, I., Bagheri, S., Schlatter, P., Henningson, D.: Seventh IUTAM Symposium on Laminar-Turbulent Transition, vol. 18: Reduced-order models for flow control: balanced modes and Koopman modes. IUTAM Bookseries (2010)

  9. 9

    Dergham G.D., Robinet J.C., Barbagallo A.: Model reduction for fluids using frequential snapshots. Phys. Fluids 23(6), 64101 (2011)

  10. 10

    Karamanos G., Karniadakis G.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163(1), 22–50 (2000)

  11. 11

    Deane A., Kevrekidis I., Karniadakis G., Orszag S.: Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Phys. Fluids 3(10), 2337 (1991)

  12. 12

    Noack B., Afanasiev K., Morzynski M., Tadmor G., Thiele F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

  13. 13

    Aling H., Banerjee S., Bangia A.K., Cole V., Ebert J.L., Emami-Naeini A., Jensen K.F., Kevrekidis I.G., Shvartsman S.: Nonlinear model reduction for simulation and control of rapid thermal processing. Proc. Am. Control Conf. 8, 2233–2238 (1997)

  14. 14

    Artana, G., Cammilleri, A., Carlier, J., Memin, E.: Strong and weak constraint variational assimilations for reduced order fluid flow modeling. J. Comput. Phys. 231(8), 3264–3288 (2012)

  15. 15

    D’Adamo J., Papadakis N., Memin E., Artana G.: Variational assimilation of pod low-order dynamical systems. J. Turbul. 8(9), 1–22 (2007)

  16. 16

    Kalb V., Deane A.: An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models. Phys. fluids 19(5), 54106 (2007)

  17. 17

    Schmid P.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

  18. 18

    Rowley C., Mezic I., Bagheri S., Schlatter P., Henningson D.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

  19. 19

    Bagheri, S.: Analysis and Control of Transitional Shear Flows Using Global Modes. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden (2010)

  20. 20

    Schmid, P., Li, L., Juniper, M., Pust, O.: Applications of the dynamic mode decomposition. Theor. and Comput. Fluid Dyn. 25 (1–4), 245–259 (2011)

  21. 21

    Chen K.K., Tu J.H., Rowley C.W.: Variants of dynamics modes decomposition boundary condition, Koopman and Fourier analysis. J. Nonlinear Sci. 1, 1–2 (2012)

  22. 22

    Mezic I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)

  23. 23

    Koopman B.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 17, 315–318 (1931)

  24. 24

    Ding J.: The point spectrum of Frobenius-Perron and Koopman operators. Proc. Am. Math. Soc. 126(5), 1355–1361 (1998)

  25. 25

    Takens F.: Lecture Notes in Mathematics: Detecting Strange Attractors in Turbulence, Symp. Dynamical Systems and Turbulence. Springer, Berlin (1981)

  26. 26

    Dong S., Karniadakis G., Ekmekci A., Rockwell D.: A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185–207 (2006)

  27. 27

    Ma X., Karamanos G., Karniadakis G.: Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 29–65 (2000)

  28. 28

    Zdravkovich M.: Flow Around Circular Cylinders: Vol 1 Fundamentals. Oxford Science Publication, Oxford (1997)

  29. 29

    Parnaudeau P., Carlier J., Heitz D., Lamballais E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3,900. Phys. Fluids 20(8), 085101 (2008)

  30. 30

    Prasad A., Williamson C.: The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375–402 (1997)

Download references

Author information

Correspondence to G. Artana.

Additional information

This research has been funded by Argentine and French governments through grants LIA FMF/PMF, Huracan, DIGITEO, PIP 3303, and UBACYT IN017.

Communicated by T.A. Zang.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MPG 2,011 kb)

ESM 1 (MPG 2,011 kb)

ESM 2 (PDF 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cammilleri, A., Gueniat, F., Carlier, J. et al. POD-spectral decomposition for fluid flow analysis and model reduction. Theor. Comput. Fluid Dyn. 27, 787–815 (2013) doi:10.1007/s00162-013-0293-2

Download citation


  • Reduced order modeling
  • POD
  • DMD
  • Spectral analysis