Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 26, Issue 6, pp 551–564 | Cite as

Transition to pseudo-turbulence in a narrow gas-evolving channel

  • A. Alexiadis
  • M. P. Dudukovic
  • P. Ramachandran
  • A. Cornell
  • J. Wanngård
  • A. Bokkers
Original Article

Abstract

Different flow regimes have been observed, both experimentally and in CFD simulations, in narrow channels with gas evolution. In this manuscript, we examine, using the Euler–Euler model, the flow in a narrow channel, where gas is evolved from a vertical wall. We find some pseudo-turbulent features at conditions described in this manuscript. The transition to this pseudo-turbulent regime is associated with the value of a specific dimensionless group.

Keywords

Regime transition Pseudo-turbulence Gas-evolving channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexiadis A., Dudukovic M.P., Ramachandran P., Cornell A., Wanngard J., Bokkers A.: Liquid–gas flow patterns in a narrow electro-chemical channel. Chem. Eng. Sci. 66(10), 2252–2260 (2011)CrossRefGoogle Scholar
  2. 2.
    Alexiadis A., Dudukovic M.P., Ramachandran P., Cornell A., Wanngard J., Bokkers A.: On the electrode boundary conditions of two phase flow in electrochemical cells. Int. J. Hydrogen Energy 36, 8557–8559 (2011)CrossRefGoogle Scholar
  3. 3.
    Boissonneau P., Byrne P.: An experimental investigation of bubble-induced free convection in a small electrochemical cell. J. Appl. Electrochem. 30(7), 767–775 (2000)CrossRefGoogle Scholar
  4. 4.
    Craig V.: Bubble coalescence and specific-ion effects. Curr. Opin. Colloid Interface Sci. 9(1–2), 178–184 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Freitas C.J.: Journal of fluids engineering editorial policy statement on the control of numerical accuracy. J. Fluids Eng. 115, 339–340 (1993)CrossRefGoogle Scholar
  6. 6.
    Dahlkild A.A.: Modelling the two-phase flow and current distribution along a vertical gas-evolving electrode. J. Fluid Mech. 428, 249–272 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Drazin P.G., Reid W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)zbMATHGoogle Scholar
  8. 8.
    Hell P., Wanngard J.: Private Communication. Eka Chemicals, Bohus (2009)Google Scholar
  9. 9.
    Henry C., Craig V.: Inhibition of bubble coalescence by osmolytes: sucrose, other sugars, and urea. Langmuir 25(19), 11406–11412 (2009)CrossRefGoogle Scholar
  10. 10.
    Liu G., Hou Y., Zhang G., Craig V.: Inhibition of bubble coalescence by electrolytes in binary mixtures of dimethyl sulfoxide and propylene carbonate. Langmuir 25(18), 10495–10500 (2009)CrossRefGoogle Scholar
  11. 11.
    Marcelja S.: Selective coalescence of bubbles in simple electrolytes. J. Phys. Chem. B 110(26), 13062–13067 (2006)CrossRefGoogle Scholar
  12. 12.
    Mat M.D., Aldas K.: Application of a two-phase flow model for natural convection in an electrochemical cell. J. Hydrogen Energy 30, 411–420 (2005)CrossRefGoogle Scholar
  13. 13.
    Mat M.D., Aldas K., Ilegbusi O.J.: A two-phase flow model for hydrogen evolution in an electrochemical cell. J. Hydrogen Energy 29, 1015–1023 (2004)CrossRefGoogle Scholar
  14. 14.
    Ipek N., Vynnycky M., Cornell A.: A coupled electrochemical and hydrodynamical two-phase model for the electrolytic pickling of steel. J. Electrochem. Soc. 155, 33–43 (2008)CrossRefGoogle Scholar
  15. 15.
    Oliveira P.J., Issa R.I.: Numerical aspects of an algorithm for the Eulerian simulation of two-phase flows. Int. J. Numer. Methods Eng. 43, 1177–1198 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pashley R.M., Craig V.: Effects of electrolytes on bubble coalescence. Langmuir 13(17), 4772–4774 (1997)CrossRefGoogle Scholar
  17. 17.
    Sato Y., Sekoguchi K.: Liquid velocity distribution in two-phase bubble flow. Int. J. Multiphase Flow 2(1), 79–95 (1975)zbMATHCrossRefGoogle Scholar
  18. 18.
    Sato Y., Sadatomi M., Sekoguchi K.: Momentum and heat transfer in two-phase bubble flow I Theory. Int. J. Multiphase Flow 7(2), 167–177 (1981)zbMATHCrossRefGoogle Scholar
  19. 19.
    Schlichting H., Gersten K.: Boundary Layer Theory. Springer, Berlin (2000)zbMATHGoogle Scholar
  20. 20.
    Tsang Y.H., Koh Y.H., Koch D.L.: Bubble-size dependence of the critical electrolyte concentration for inhibition of coalescence. J. Colloid Interface Sci. 275(1), 290–297 (2004)CrossRefGoogle Scholar
  21. 21.
    Wen C.Y., Yu Y.H.: Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62, 100–111 (1966)Google Scholar
  22. 22.
    Wetind R., Dahlkild A.: On the transport of small bubbles under developing channel flow in a buoyant gas-evolving electrochemical cell. Ind. Eng. Chem. Res. 40, 5228–5233 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Alexiadis
    • 1
    • 2
  • M. P. Dudukovic
    • 1
  • P. Ramachandran
    • 1
  • A. Cornell
    • 2
  • J. Wanngård
    • 3
  • A. Bokkers
    • 4
  1. 1.Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Chemical Engineering and Technology, Applied ElectrochemistryKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Eka Chemicals ABBohusSweden
  4. 4.AKZO Nobel Central Research BVArnhemThe Netherlands

Personalised recommendations