Theoretical and Computational Fluid Dynamics

, Volume 26, Issue 6, pp 591–594

Integrable stationary solution for the fully nonlinear local induction equation describing the motion of a vortex filament

Brief Report

Abstract

In this brief communication, we demonstrate an implicit exact stationary solution to the fully nonlinear local induction equation describing the motion of a vortex filament. The solution, which is periodic in the spatial variable, is governed by a second-order nonlinear equation that has two exact first integrals.

Keywords

Vortex dynamics Vortex filament Local induction equation Stationary solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shivamoggi B.K., van Heijst G.J.F.: Motion of a vortex filament in the local induction approximation: Reformulation of the Da Rios-Betchov equations in the extrinsic filament coordinate space. Phys. Lett. A 374, 1742 (2010)MATHCrossRefGoogle Scholar
  2. 2.
    Dmitriyev V.P.: Helical waves on a vortex filament. Am. J. Phys. 73, 563 (2005)CrossRefGoogle Scholar
  3. 3.
    Van Gorder, R.A.: Motion of a vortex filament in the local induction approximation: a perturbative approach. Theor. Comput. Fluid Dyn. (2011, in press). doi:10.1007/s00162-010-0218-2
  4. 4.
    Da Rios L.S.: Sul moto d’un liquido indefinite con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22, 117 (1906)MATHCrossRefGoogle Scholar
  5. 5.
    Arms R.J., Hama F.R.: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8, 553 (1965)CrossRefGoogle Scholar
  6. 6.
    Umeki M.: A locally induced homoclinic motion of a vortex filament. Theor. Comput. Fluid Dyn. 24, 383 (2010)MATHCrossRefGoogle Scholar
  7. 7.
    Hasimoto H.: Motion of a Vortex Filament and its relation to Elastica. J. Phys. Soc. Jpn. 31, 293 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations