Theoretical and Computational Fluid Dynamics

, Volume 26, Issue 1–4, pp 245–277

The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary

Original Article

Abstract

An understanding of the phenomena associated with cavitation is important in many areas of science and engineering. This paper is concerned with the influence of viscoelasticity on the dynamics of cavitation bubbles near rigid boundaries. Viscoelastic effects are modelled using a Maxwell constitutive equation, and a generalized Bernoulli equation is derived. The governing equations are solved using the boundary element method in which both the bubble surface and the potential are represented by cubic splines. The numerical scheme is validated through comparisons with results in the literature for the inviscid case. The introduction of viscoelasticity introduces some interesting bubble dynamics including the occurrence of oscillations during collapse. Most importantly, it is shown that viscoelasticity can serve to suppress the formation of a liquid jet. The subsequent reduced pressures compared with the inviscid case suggest that viscoelasticity has a mitigating effect on cavitation damage.

Keywords

Viscoelasticity Cavitation bubbles Boundary element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  2. 2.
    Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)MATHGoogle Scholar
  3. 3.
    Benjamin T.B., Ellis A.T.: The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221–240 (1966)CrossRefGoogle Scholar
  4. 4.
    Best J.P.: The formation of toroidal bubbles upon the collapse of transient cavities. J. Fluid Mech. 251, 79–107 (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Best J.P., Kucera A.: A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137–154 (1992)CrossRefMATHGoogle Scholar
  6. 6.
    Blake J.R., Gibson D.C.: Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99–123 (1989)CrossRefGoogle Scholar
  7. 7.
    Blake J.R., Taib B.B., Doherty G.: Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479–497 (1986)CrossRefMATHGoogle Scholar
  8. 8.
    Blake J.R., Taib B.B., Doherty G.: Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197–212 (1987)CrossRefGoogle Scholar
  9. 9.
    Boulton-Stone J.M., Blake J.R.: Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437–466 (1993)CrossRefMATHGoogle Scholar
  10. 10.
    Brennen C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)Google Scholar
  11. 11.
    Brujan E.A.: A first order model for bubble dynamics in a compressible viscoelastic liquid. J. Non Newtonian Fluid Mech. 84, 83–103 (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Brujan E.A.: The equation of bubble dynamics in a compressible linear viscoelastic liquid. Fluid Dyn. Res. 29, 287–294 (2001)CrossRefGoogle Scholar
  13. 13.
    Brujan E.A.: Shock wave emission from laser-induced cavitation bubbles in polymer solutions. Ultrasonics 48, 423–426 (2008)CrossRefGoogle Scholar
  14. 14.
    Brujan E.A.: Cavitation bubble dynamics in non-Newtonian fluids. Polym. Eng. Sci. 49, 419–431 (2009)CrossRefGoogle Scholar
  15. 15.
    Brujan E.A., Ikeda T., Matsumoto Y.: Dynamics of ultrasound-induced cavitation bubbles in non-Newtonian liquids and near a rigid boundary. Phys. Fluids 16, 2401–2410 (2004)CrossRefGoogle Scholar
  16. 16.
    Brujan E.A., Keen G.S., Vogel A., Blake J.R.: The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 85–92 (2002)CrossRefGoogle Scholar
  17. 17.
    Brujan E.A., Ohl C.D., Lauterborn W., Philipp A.: Dynamics of laser-induced cavitation bubbles in polymer solutions. Acustica 82, 423–430 (1996)Google Scholar
  18. 18.
    Canot E., Davoust L.: Numerical simulation of the buoyancy-driven bouncing of a 2D bubble at a horizontal wall. Theor. Comput. Fluid Dyn. 17, 51–72 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Chahine G.L., Fruman D.: Dilute polymer solution effects on bubble growth and collapse. Phys. Fluids 22, 1406–1407 (1979)CrossRefGoogle Scholar
  20. 20.
    Curle N., Davies H.J.: Modern Fluid Dynamics. Vol. 1, D. Van Nostrand, London (1968)MATHGoogle Scholar
  21. 21.
    Dommermuth D.G., Yue D.K.P.: Numerical simulation of nonlinear axisymmetric flows with a free surface. J. Fluid Mech. 178, 195–219 (1987)CrossRefMATHGoogle Scholar
  22. 22.
    Dular M., Bachert B., Stoffel B., Sirok B.: Relationship between cavitation structures and cavitation damage. Wear 257(11), 1176–1184 (2004)CrossRefGoogle Scholar
  23. 23.
    Evan A., Willis L., McAteer J., Bailey M., Connors B., Shao Y., Lingeman J., Williams J. Jr., Fineberg N., Crum L.: Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J. Urol. 4(1), 1556–1562 (2002)Google Scholar
  24. 24.
    Fogler H.S., Goddard J.D.: Collapse of spherical cavities in viscoelastic fluids. Phys. Fluids 13(5), 1135–1141 (1970)CrossRefMATHGoogle Scholar
  25. 25.
    Gao X.: A promising boundary element formulation for three dimensional viscous flow. Int. J. Numer. Methods Fluids 47, 19–43 (2005)CrossRefMATHGoogle Scholar
  26. 26.
    Georgescu S.-C., Achard J.-L., Canot E.: Jet drops ejection in bursting gas bubble processes. Eur. J. Mech. B Fluids 21, 265–280 (2002)CrossRefMATHGoogle Scholar
  27. 27.
    Joseph D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, New York (1990)MATHGoogle Scholar
  28. 28.
    Joseph D.D.: Rise velocity of a spherical cap bubble. J. Fluid Mech. 488, 213–223 (2003)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Joseph D.D.: Potential flow of viscous fluids: historical notes. Int. J. Multiphase Flow 32, 285–310 (2006)CrossRefMATHGoogle Scholar
  30. 30.
    Joseph D.D., Liao T.Y.: Potential flows of viscous and viscoelastic fluids. J. Fluid Mech. 265, 1–23 (1994)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Khayat R.E.: A boundary element analysis of multiply connected three dimensional cavity mixing flow of polymer solutions. Int. J. Numer. Methods Fluids 31, 1173–1194 (1999)CrossRefMATHGoogle Scholar
  32. 32.
    Khayat R.E.: Three-dimensional boundary element analysis of drop deformation in confined flow for Newtonian and viscoelastic systems. Int. J. Numer. Methods Fluids 34, 241–275 (2000)CrossRefMATHGoogle Scholar
  33. 33.
    Khayat R.E., Marek K.: An adaptive boundary element approach to 3D transient free-surface flow of viscous fluids. Eng. Anal. Bound. Elem. 23, 111–122 (1999)CrossRefMATHGoogle Scholar
  34. 34.
    Kim C.: Collapse of spherical cavities in Maxwell fluids. J. Non Newtonian Fluid Mech. 55, 37–58 (1994)CrossRefGoogle Scholar
  35. 35.
    Kim S.J., Lim K.H., Kim C.: Deformation characteristics of spherical bubble collapse in Newtonian fluids near the wall using the finite element method with ALE formulation. Korea Aust. Rheol. J. 18(2), 109–118 (2006)Google Scholar
  36. 36.
    Lee M., Klaseboer E., Khoo B.C.: On the boundary integral method for the rebounding bubble. J. Fluid Mech. 507, 407–429 (2007)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Li J.: General explicit difference formulas for numerical differentiation. J. Comput. Appl. Math. 183, 29–52 (2005)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Lohse D., Schmitz B., Versluis M.: Snapping shrimp make flashing bubbles. Nature 413, 477–478 (2001)CrossRefGoogle Scholar
  39. 39.
    Longuet-Higgins M.S., Cokelet E.D.: The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A. 350, 1–26 (1976)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Minsier V., De Wilde J., Proost J.: Simulation of the effect of viscosity on jet penetration into a single cavitating bubble. J. Appl. Phys. 106, 084906 (2009)CrossRefGoogle Scholar
  41. 41.
    Paris F., Canas J.: Boundary Element Method Fundamentals and Applications. Oxford University Press, Oxford (1997)MATHGoogle Scholar
  42. 42.
    Plesset M., Chapman R.: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47(2), 283–290 (1971)CrossRefGoogle Scholar
  43. 43.
    Popinet S., Zaleski S.: Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137–163 (2002)CrossRefMATHGoogle Scholar
  44. 44.
    Pozrikidis C.: Three-dimensional oscillations of rising bubbles. Eng. Anal. Bound. Elem. 28, 315–323 (2004)CrossRefMATHGoogle Scholar
  45. 45.
    Rayleigh L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 94–98 (1917)Google Scholar
  46. 46.
    Rush B.M., Nadim A.: The shape oscillations of a two-dimensional drop including viscous effects. Eng. Anal. Bound. Elem. 24, 43–51 (2000)CrossRefMATHGoogle Scholar
  47. 47.
    Taib, B.B.: Boundary Integral Methods Applied to Cavitation Bubble Dynamics. PhD thesis, University of Wollongong, Australia (1985)Google Scholar
  48. 48.
    Tong R.P.: The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339–361 (1999)CrossRefMATHGoogle Scholar
  49. 49.
    Williams P.R., Williams P.M., Brown S.W.J.: A study of liquid jets formed by bubble collapse under shock waves in elastic and Newtonian liquids. J. Non Newtonian Fluid Mech 76, 307–325 (1998)CrossRefMATHGoogle Scholar
  50. 50.
    Xi W.Q.: Numerical simulation of violent bubble motion. Phys. Fluids 16(5), 1610–1919 (2004)CrossRefGoogle Scholar
  51. 51.
    Zhang S., Duncan J.H., Chanine G.L.: The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147–181 (1993)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of MathematicsCardiff UniversityCardiffUnited Kingdom

Personalised recommendations