Advertisement

Flow of an electrorheological fluid between eccentric rotating cylinders

  • Vít Průša
  • K. R. Rajagopal
Original Article

Abstract

Electrorheological fluids have numerous potential applications in vibration dampers, brakes, valves, clutches, exercise equipment, etc. The flows in such applications are complex three-dimensional flows. Most models that have been developed to describe the flows of electrorheological fluids are one-dimensional models. Here, we discuss the behavior of two fully three-dimensional models for electrorheological fluids. The models are such that they reduce, in the case of simple shear flows with the intensity of the electric field perpendicular to the streamlines, to the same constitutive relation, but they would not be identical in more complicated three-dimensional settings. In order to show the difference between the two models, we study the flow of these fluids between eccentrically placed rotating cylinders kept at different potentials, in the setting that corresponds to technologically relevant problem of flow of electrorheological fluid in journal bearing. Even though the two models have quite a different constitutive structure, due to the assumed forms for the velocity and pressure fields, the models lead to the same velocity field but to different pressure fields. This finding illustrates the need for considering the flows of fluids described by three-dimensional constitutive models in complex geometries, and not restricting ourselves to flows of fluids described by one-dimensional models or simple shear flows of fluids characterized by three-dimensional models.

Keywords

Electrorheological fluids Constitutive modelling Numerical simulation Eccentric cylinders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Jdayil B., Brunn P.O.: Effects of electrode morphology on the slit flow of an electrorheological fluid. J. Non-Newton Fluid Mech. 63(1), 45–61 (1996). doi: 10.1016/0377-0257(95)01416-0 CrossRefGoogle Scholar
  2. 2.
    Abu-Jdayil B., Brunn P.O.: Study of the flow behavior of electrorheological fluids at shear- and flow-mode. Chem. Eng. Process 36(4), 281–289 (1997). doi: 10.1016/S0255-2701(97)00002-0 CrossRefGoogle Scholar
  3. 3.
    Atkin R.J., Xiao S., Bullough W.A.: Solutions of the constitutive-equations for the flow of an electrorheological fluid in radial configurations. J. Rheol. 35(7), 1441–1461 (1991)CrossRefGoogle Scholar
  4. 4.
    Belza T., Pavlínek V., Sáha P., Quadrat O.: Effect of field strength and temperature on viscoelastic properties of electrorheological suspensions of urea-modified silica particles. Colloid Surf. A-Physicochem. Eng. Asp. 316(1–3), 89–94 (2008). doi: 10.1016/j.colsurfa.2007.08.035 CrossRefGoogle Scholar
  5. 5.
    Bernardi C., Canuto C., Maday Y.: Generalized Inf-Sup conditions for Chebyshev spectral approximation of the stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988). doi: 10.1137/0725070 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bouzidane A., Thomas M.: An electrorheological hydrostatic journal bearing for controlling rotor vibration. Comput. Struct. 86(3–5), 463–472 (2008). doi: 10.1016/j.compstruc.2007.02.006 CrossRefGoogle Scholar
  7. 7.
    Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods: Fundamentals in Single Domains, scientific computation. Springer-Verlag, Berlin (2006)Google Scholar
  8. 8.
    Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation. Springer, Berlin (2007)Google Scholar
  9. 9.
    Chandrasekhar S.: Hydrodynamic and Hydromagnetic stability. The International series of Monographs on physics. Clarendon Press, Oxford (1961)Google Scholar
  10. 10.
    Choi Y.T., Cho J.U., Choi S.B., Wereley N.M.: Constitutive models of electrorheological and magnetorheological fluids using viscometers. Smart Mater. Struct. 14(5), 1025–1036 (2005). doi: 10.1088/0964-1726/14/5/041 CrossRefGoogle Scholar
  11. 11.
    Coleman B.D., Markovitz H., Noll W.: Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment. Springer-Verlag, Berlin (1966)Google Scholar
  12. 12.
    Dai R.X., Dong Q., Szeri A.Z.: Approximations in hydrodynamic lubrication. J. Tribol-Trans ASME 114(1), 14–25 (1992)CrossRefGoogle Scholar
  13. 13.
    Edgeworth R., Dalton B.J., Parnell T.: The pitch drop experiment. Eur. J. Phys. 5(4), 198–200 (1984)CrossRefGoogle Scholar
  14. 14.
    Gast A.P., Zukoski C.F.: Electrorheological fluids as colloidal suspensions. Adv. Colloid Interface Sci. 30, 153–202 (1989). doi: 10.1016/0001-8686(89)80006-5 CrossRefGoogle Scholar
  15. 15.
    Gavin H.P., Hanson R.D., Filisko F.E.: Electrorheological dampers 1. Analysis and design. J. Appl. Mech-Trans ASME 63(3), 669–675 (1996)CrossRefGoogle Scholar
  16. 16.
    Gwynllyw D., Davies A., Phillips T.: On the effects of a piezoviscous lubricant on the dynamics of a journal bearing. J. Rheol. 40(6), 1239–1266 (1996)CrossRefGoogle Scholar
  17. 17.
    Halsey T.C., Martin J.E., Adolf D.: Rheology of electrorheological fluids. Phys. Rev. Lett. 68(10), 1519–1522 (1992). doi: 10.1103/PhysRevLett.68.1519 CrossRefGoogle Scholar
  18. 18.
    Huilgol, R.R.: On the definition of pressure in rheology. Rheol. Bull. 72(8), (2009)Google Scholar
  19. 19.
    Hutter K., van de Ven A.A.F.: Field Matter Interactions in Thermoelastic Solids, Lecture Notes in Physics. Vol. 88. Springer-Verlag, Berlin (1978)Google Scholar
  20. 20.
    Jeffery G.B.: Plane stress and plane strain in bipolar co-ordinates. Philos. Trans. R Soc. A-Math. Phys. Eng. Sci. 221, 265–293 (1921)CrossRefGoogle Scholar
  21. 21.
    Jeffery G.B.: The rotation of two circular cylinders in a viscous fluid. Proc. R Soc. Lond. A 101(709), 169–174 (1922)CrossRefGoogle Scholar
  22. 22.
    Kollias A., Dimarogonas A.: Properties of zeolite- and cornstarch-based electrorheological fluids at high shear strain rates. J. Intell. Mater. Syst. Struct. 4(4), 519–526 (1993). doi: 10.1177/1045389X9300400411 CrossRefGoogle Scholar
  23. 23.
    Krztoń-Maziopa A., Wyciślik H., Płocharski J.: Study of electrorheological properties of poly(p-phenylene) dispersions. J. Rheol. 49(6), 1177–1192 (2005). doi: 10.1122/1.2048740 CrossRefGoogle Scholar
  24. 24.
    Martin J.E., Adolf D., Halsey T.C.: Electrorheology of a model colloidal fluid. J. Colloid Interface Sci. 167(2), 437–452 (1994). doi: 10.1006/jcis.1994.1379 CrossRefGoogle Scholar
  25. 25.
    Nikolakopoulos P.G., Papadopoulos C.A.: Controllable misaligned journal bearings, lubricated with smart fluids. J. Intell. Mater. Syst. Struct. 8(2), 125–137 (1997). doi: 10.1177/1045389X9700800203 CrossRefGoogle Scholar
  26. 26.
    Pao, Y.H.: Mechanics Today. Vol. 4, pp. 209–305. Pergamon Press, New York, chap Electromagnetic forces in deformable continua (1978)Google Scholar
  27. 27.
    Penfield P., Haus H.A.: Electrodynamics of Moving Media. MIT Press, Cambridge (1967)Google Scholar
  28. 28.
    Peng J., Zhu K.Q.: Effects of electric field on hydrodynamic characteristics of finite-length ER journal bearings. Tribol. Int. 39(6), 533–540 (2006). doi: 10.1016/j.triboint.2005.03.017 CrossRefGoogle Scholar
  29. 29.
    Phillips T.N., Roberts G.W.: The treatment of spurious pressure modes in spectral incompressible flow calculations. J. Comput. Phys. 105(1), 150–164 (1993). doi: 10.1006/jcph.1993.1060 CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Pipkin A.C., Owen D.R.: Nearly viscometric flows. Phys. Fluids 10(4), 836–843 (1967). doi: 10.1063/1.1762197 CrossRefGoogle Scholar
  31. 31.
    Rajagopal K.R.: On implicit constitutive theories. Appl. Math. Praha. 48(4), 279–319 (2003). doi: 10.1023/A:1026062615145 CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Rajagopal K.R., Růžička M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23(4), 401–407 (1996). doi: 10.1016/0093-6413(96)00038-9 CrossRefzbMATHGoogle Scholar
  33. 33.
    Rajagopal K.R., Růžička M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13(1), 59–78 (2001). doi: 10.1007/s001610100034 CrossRefzbMATHGoogle Scholar
  34. 34.
    Rajagopal K.R., Srinivasa A.R.: On thermomechanical restrictions of continua. Proc. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 631–651 (2004). doi: 10.1098/rspa.2002.1111 CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Rajagopal K.R., Wineman A.S.: Flow of electrorheological materials. Acta Mech. 91(1–2), 57–75 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Rajagopal K.R., Yalamanchili R.C., Wineman A.S.: Modeling electrorheological materials through mixture theory. Int. J. Eng. Sci. 32(3), 481–500 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Schumack M.R., Schultz W.W., Boyd J.P.: Spectral method solution of the stokes equations on nonstaggered grids. J. Comput. Phys. 94(1), 30–58 (1991). doi: 10.1016/0021-9991(91)90136-9 CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Shulman Z., Korobko E., Yanovskii Y.: The mechanism of the viscoelastic behaviour of electrorheological suspensions. J. Non-Newton Fluid Mech. 33(2), 181–196 (1989). doi: 10.1016/0377-0257(89)85026-8 CrossRefGoogle Scholar
  39. 39.
    Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, Academic Press, New York (1971)Google Scholar
  40. 40.
    Szeri A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  41. 41.
    Thomasset F.: Implementation of Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Physics. Springer-Verlag, New York (1981)Google Scholar
  42. 42.
    Truesdell C.: The meaning of viscometry in fluid dynamics. Annu. Rev. Fluid Mech. 6, 111–146 (1974). doi: 10.1146/annurev.fl.06.010174.000551 CrossRefGoogle Scholar
  43. 43.
    Truesdell C., Noll W.: The non-linear field theories of mechanics. In: Flüge, S. (ed.) Handbuch der Physik, Springer, Berlin (1965)Google Scholar
  44. 44.
    Weideman J.A., Reddy S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26(4), 465–519 (2000). doi: 10.1145/365723.365727 CrossRefMathSciNetGoogle Scholar
  45. 45.
    Wineman A.S., Rajagopal K.R.: On constitutive equations for electrorheological materials. Contin. Mech. Thermodyn. 7(1), 1–22 (1995). doi: 10.1007/BF01175766 CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Winslow W.M.: Induced fibration of suspensions. J. Appl. Phys. 20(12), 1137–1140 (1949). doi: 10.1063/1.1698285 CrossRefGoogle Scholar
  47. 47.
    Zukoski C.F.: Material properties and the electrorheological response. Annu. Rev. Mater. Sci. 23(1), 45–78 (1993). doi: 10.1146/annurev.ms.23.080193.000401 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations