Advertisement

Applications of the dynamic mode decomposition

  • P. J. SchmidEmail author
  • L. Li
  • M. P. Juniper
  • O. Pust
Original Article

Abstract

The decomposition of experimental data into dynamic modes using a data-based algorithm is applied to Schlieren snapshots of a helium jet and to time-resolved PIV-measurements of an unforced and harmonically forced jet. The algorithm relies on the reconstruction of a low-dimensional inter-snapshot map from the available flow field data. The spectral decomposition of this map results in an eigenvalue and eigenvector representation (referred to as dynamic modes) of the underlying fluid behavior contained in the processed flow fields. This dynamic mode decomposition allows the breakdown of a fluid process into dynamically revelant and coherent structures and thus aids in the characterization and quantification of physical mechanisms in fluid flow.

Keywords

Dynamic mode decomposition Arnoldi method Iterative techniques Experimental fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonia R.A.: Conditional sampling in turbulence measurement. Ann. Rev. Fluid Mech. 13, 131–156 (1981)CrossRefGoogle Scholar
  2. 2.
    Aubry N.: On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2, 339–352 (1991)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bagheri S., Schlatter P., Schmid P.J., Henningson D.S.: Global stability of a jet in crossflow. J. Fluid Mech. 624, 33–44 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barbagallo A., Sipp D., Schmid P.J.: Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 1–50 (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Edwards W.S., Tuckerman L.S., Friesner R.A., Sorensen D.C.: Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110, 82–102 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hasselmann K.: POPs and PIPs. The reduction of complex dynamical systems using principal oscillations and interaction patterns. J. Geophys. Res. 93, 10975–10988 (1988)CrossRefGoogle Scholar
  7. 7.
    Heaton C.S., Nichols J.W., Schmid P.J.: Global linear stability of the non-parallel Batchelor vortex. J. Fluid Mech. 629, 139–160 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Herzog, S.: The large scale structure in the near-wall region of turbulent pipe flow. Ph.D. Dissertation, Department of Mechanical Engineering, Cornell University, Ithaca, NY (1986)Google Scholar
  9. 9.
    Huerre P., Monkewitz P.A.: Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473–537 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hussain A.K.M.F., Zaman K.B.M.Q.: The ‘preferred mode’ of the axisymmetric jet. J. Fluid Mech. 110, 39–71 (1981)CrossRefGoogle Scholar
  11. 11.
    Hussain A.K.M.F.: Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)CrossRefGoogle Scholar
  12. 12.
    Lasota A., Mackey M.C.: Chaos, Fractals and Noise: Stochastic Aspects of Dynamics. Springer Verlag, Berlin (1994)zbMATHGoogle Scholar
  13. 13.
    Lehoucq R.B., Scott J.A.: Implicitly restarted Arnoldi methods and subspace iterations. SIAM J. Matrix Anal. Appl. 23, 551–562 (1997)CrossRefGoogle Scholar
  14. 14.
    Lumley J.L.: Stochastic Tools in Turbulence. Academic Press, New York (1970)zbMATHGoogle Scholar
  15. 15.
    Mezić I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Monkewitz P.A., Sohn K.D.: Absolute instabilities in hot jets. AIAA J. 26, 911–916 (1988)CrossRefGoogle Scholar
  17. 17.
    Rajagopalan S., Antonia R.A.: Use of a quadrant analysis technique to identify coherent structures in a turbulent boundary layer. Phys. Fluids 25, 949–956 (1982)CrossRefGoogle Scholar
  18. 18.
    Rowley C.W., Mezić I., Bagheri S., Schlatter S., Henningson D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ruhe A.: Rational Krylov sequence methods for eigenvalue computations. Linear Algebra Appl. 58, 279–316 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schmid P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Schoppa W., Hussain A.K.M.F.: Coherent structure dynamics in near wall turbulence. Fluid Dyn. Res. 26(2), 119–139 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Theofilis V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39, 249–315 (2003)CrossRefGoogle Scholar
  23. 23.
    von Storch H., Bürger G., Schnur R., von Storch J.: Principal oscillation patterns: a review. J. Clim. 8, 377–400 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratoire d’Hydrodynamique (LadHyX)CNRS-Ecole PolytechniquePalaiseauFrance
  2. 2.Department of EngineeringCambridge UniversityCambridgeUK
  3. 3.Dantec DynamicsCopenhagenDenmark

Personalised recommendations