Transient growth mechanisms of low Reynolds number flow over a low-pressure turbine blade

  • A. S. Sharma
  • N. Abdessemed
  • S. J. Sherwin
  • V. Theofilis
Original Article


A direct transient growth analysis for three-dimensional perturbations to flow past a periodic array of T-106/300 low-pressure turbine fan blades is presented. The methodology is based on a singular value decomposition of the flow evolution operator, linearised about a steady or periodic base flow. This analysis yields the optimal growth modes. Previous work on global mode stability analysis of this flow geometry showed the flow is asymptotically stable, indicating a non-modal explanation of transition may be more appropriate. The present work extends previous investigations into the transient growth around a steady base flow, to higher Reynolds numbers and periodic base flows. It is found that the notable transient growth of the optimal modes suggests a plausible route to transition in comparison to modal growth for this configuration. The spatial extent and localisation of the optimal modes is examined and possible physical triggering mechanisms are discussed. It is found that for longer times and longer spanwise wavelengths, a separation in the shear layer excites the wake mode. For shorter times and spanwise wavelengths, smaller growth associated with excitation of the near wake are observed.


Transient growth Stability Global modes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdessemed, N., Sherwin, S., Theofilis, V.: On unstable 2d basic states in low pressure turbine flows at moderate reynolds numbers. AIAA Paper 2004-2541 (2004)Google Scholar
  2. 2.
    Abdessemed, N., Sherwin, S., Theofilis, V.: Linear stability of the flow past a low pressure turbine blade. AIAA Paper 2006-3530 (2006)Google Scholar
  3. 3.
    Abdessemed N., Sharma A.S., Sherwin S.J., Theofilis V.: Transient growth analysis of the flow past a circular cylinder. Phys. Fluids 21(4), 044103 (2009)CrossRefGoogle Scholar
  4. 4.
    Abdessemed N., Sherwin S.J., Theofilis V.: Linear instability analysis of low pressure turbine flows. J. Fluid Mech. 628, 57–83 (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Barkley D., Henderson R.: Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215–241 (1996)zbMATHCrossRefGoogle Scholar
  6. 6.
    Barkley D., Gomes M.G.M., Henderson R.D.: Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167–190 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barkley D., Blackburn H.M., Sherwin S.J.: Direct optimal growth analysis for timesteppers. Int. J. Num. Meth. Fluids 57, 1435 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Blackburn H.M.: Three-dimensional instability and state selection in an oscillatory axisymmetric swirling flow. Phys. Fluids 14(11), 3983–3996 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Blackburn H.M., Lopez J.M.: The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow. J. Fluid Mech. 497, 289–317 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Blackburn H.M., Sherwin S.J.: Instability modes and transition of pulsatile stenotic flow: pulse-period dependence. J. Fluid Mech. 573, 57–88 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Blackburn H., Sherwin S.J., Barkley D.: Convective instability and transient growth in steady and pulsatile stenotic flows. J. Fluid Mech. 607, 267–277 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Blackburn H.M., Barkley D., Sherwin S.J.: Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271–304 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Butler K.M., Farrell B.F.: Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4(8), 1637–1650 (1992)CrossRefGoogle Scholar
  14. 14.
    Corbett P., Bottaro A.: Optimal perturbations for boundary layers subject to stream-wise pressure gradient. Phys. Fluids 12(1), 120–130 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ding Y., Kawahara M.: Linear stability of incompressible flow using a mixed finite element method. J. Comput. Phys. 139, 243–273 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Drazin P., Reid W.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)zbMATHGoogle Scholar
  17. 17.
    Ehrenstein U.: On the linear stability of channel flows over riblets. Phys. Fluids 8, 3194–3196 (1996)zbMATHCrossRefGoogle Scholar
  18. 18.
    Ehrenstein U., Gallaire F.: On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer. J. Fluid Mech. 536, 209–218 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Elston J.R., Blackburn H.M., Sheridan J.: The primary and secondary instabilities of flow generated by an oscillating circular cylinder. J. Fluid Mech. 550, 359–389 (2006)zbMATHCrossRefGoogle Scholar
  20. 20.
    Farrell B.F.: Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31(8), 2093–2102 (1988)CrossRefGoogle Scholar
  21. 21.
    Giannetti F., Luchini P.: Structural receptivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167–197 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    González L., Theofilis V., Gómez-Blanco R.: Finite element methods for viscous incompressible biglobal instability analysis on unstructured meshes. AIAA J. 45(4), 840–854 (2007)CrossRefGoogle Scholar
  23. 23.
    Guermond J.L., Shen J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Henderson R., Barkley D.: Secondary instability in the wake of a circular cylinder. Phys. Fluids 6(8), 1683–1685 (1996)CrossRefGoogle Scholar
  25. 25.
    Hœpffner J., Brandt L., Henningson D.S.: Transient growth on boundary layer streaks. J. Fluid Mech. 537, 91–100 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Karniadakis G.E., Sherwin S.J.: Spectral/hp Element Methods for CFD. OUP, Oxford (1999)Google Scholar
  27. 27.
    Karniadakis G., Israeli M., Orszag S.: High-order splitting methods for the incompressible Navier-Stokes equations. Journal of Computational Physics 97, 414–443 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Luchini P.: Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289–309 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Marquet, O., Sipp, D., Jacquin, L.: Global optimal perturbations in a separated flow over a backward-rounded-step. In: 36th AIAA Fluid Dynamics Conference and Exhibit. San Francisco (2006). Paper no. 2006-2879Google Scholar
  30. 30.
    Schatz M., Barkley D., Swinney H.: Instabilities in spatially periodic channel flow. Phys. Fluids 7, 344–358 (1995)CrossRefGoogle Scholar
  31. 31.
    Schmid P.J.: Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129–162 (2007)CrossRefGoogle Scholar
  32. 32.
    Schmid P., Henningson D.: Stability and transition in shear flows. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  33. 33.
    Sharma, A., Abdessemed, N., Sherwin, S., Theofilis, V.: Optimal growth modes of flows in complex geometries. In: IUTAM Symposium on Flow Control and MEMS, London, UK (2006)Google Scholar
  34. 34.
    Sherwin S.J., Blackburn H.M.: Three-dimensional instabilities and transition of steady and pulsatile flows in an axisymmetric stenotic tube. J. Fluid Mech. 533, 297–327 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Theofilis V.: Advances in global linear instability of nonparallel and three-dimensional flows. Prog. Aeronaut. Sci. 39(4), 249–315 (2003)CrossRefGoogle Scholar
  36. 36.
    Theofilis V., Hein S., Dallmann U.: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond (A) 358, 3229–3246 (2000)zbMATHCrossRefGoogle Scholar
  37. 37.
    Theofilis V., Fedorov A., Obrist D., Dallmann U.C.: The extended Görtler-Hämmerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow. J. Fluid Mech. 487, 271–313 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Theofilis V., Duck P.W., Owen J.: Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249–286 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Trefethen L.N., Trefethen A.E., Reddy S.C., Driscoll T.: Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Tuckerman L., Barkley D.: Bifurcation analysis for timesteppers. In: Doedel, E., Tuckerman, L. (eds) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, pp. 453–566. Springer, New York (2000)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. S. Sharma
    • 1
    • 3
  • N. Abdessemed
    • 2
  • S. J. Sherwin
    • 3
  • V. Theofilis
    • 4
  1. 1.Department of Electronic and Electrical EngineeringImperial CollegeLondonUK
  2. 2.Transsolar Energie Technik GmbHStuttgartGermany
  3. 3.Department of AeronauticsImperial CollegeLondonUK
  4. 4.School of AeronauticsUniversidad Politecnica de MadridMadridSpain

Personalised recommendations