Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 24, Issue 6, pp 511–536 | Cite as

Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation

  • Juan Pedro MelladoEmail author
  • Bjorn Stevens
  • Heiko Schmidt
  • Norbert Peters
Open Access
Original Article

Abstract

A mixture fraction formulation to perform direct numerical simulations of a disperse and dilute two-phase system consisting of water liquid and vapor in air in local thermodynamic equilibrium using a two-fluid model is derived and discussed. The goal is to understand the assumptions intrinsic to this simplified but commonly employed approach for the study of two-layer buoyancy reversing systems like the cloud-top mixing layer. Emphasis is placed on molecular transport phenomena. In particular, a formulation is proposed that recovers the actual nondiffusive liquid-phase continuum as a limiting case of differential diffusion. High-order numerical schemes suitable for direct numerical simulations in the compressible and Boussinesq limits are described, and simulations are presented to validate the incompressible approach. As expected, the Boussinesq approximation provides an accurate and efficient description of the flow on the scales (of the order of meters) that are considered.

Keywords

Stratocumulus clouds Multiphase Free convection Free turbulent flows 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Albrecht B.A., Penc R.S., Schubert W.H.: An observational study of cloud-topped mixed layers. J. Atmos. Sci. 42, 800–822 (1985)CrossRefGoogle Scholar
  2. 2.
    Aliseda A., Cartellier A., Hainaux F., Lasheras J.: Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77–105 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Andrejczuk M., Grabowski W.W., Malinowski S.P., Smolarkiewicz P.K.: Numerical simulation of cloud-clear air interfacial mixing. J. Atmos. Sci. 61, 1726–1739 (2004)CrossRefGoogle Scholar
  4. 4.
    Andrejczuk M., Grabowski W.W., Malinowski S.P., Smolarkiewicz P.K.: Numerical simulation of cloud-clear air interfacial mixing: effects of cloud microphysics. J. Atmos. Sci. 63, 3204–3225 (2006)CrossRefGoogle Scholar
  5. 5.
    Bannon P.R.: Theoretical formulation for models of moist convection. J. Atmos. Sci. 59, 1967–1982 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bilicki Z., Giot M., Kwidzinski R.: Fundamentals of two-phase flow by the method of irreversible thermodynamics. J. Atmos. Sci. 28, 1983–2005 (2002)zbMATHGoogle Scholar
  7. 7.
    Blyth A.: Entrainment in cumulus clouds. J. Appl. Meteorol. 32, 626–641 (1993)CrossRefGoogle Scholar
  8. 8.
    Bretherton C.S.: A theory for nonprecipitating moist convection between two parallel plates. Part I: thermodynamics and linear solutions. J. Atmos. Sci. 44, 1809–1827 (1987)CrossRefGoogle Scholar
  9. 9.
    Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge-Kutta schemes. Tech. Rep. TM-109112, NASA Langley Research Center (1994)Google Scholar
  10. 10.
    Carpenter M.H., Gottlieb D., Abarbanel S.: The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys. 108, 272–295 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Caughey S.J., Crease B.A., Roach W.T.: A field study of nocturnal stratocumulus II Turbulence structure and entrainment. Q. J. Roy. Meteorol. Soc. 108, 125–144 (1982)CrossRefGoogle Scholar
  12. 12.
    Cook A.W., Dimotakis P.E.: Transition stages of Rayleigh-Taylor instability between miscible fluids. J. Fluid Mech. 443, 69–99 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Crowe C.T., Troutt T.R., Chung J.N.: Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28, 11–43 (1996)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Deardorff J.W.: Cloud top entrainment instability. J. Atmos. Sci. 37, 131–147 (1980)CrossRefGoogle Scholar
  15. 15.
    Dimotakis P.E.: Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Drew D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)CrossRefGoogle Scholar
  17. 17.
    Druzhinin O., Elghobashi S.: Direct numerical simulation of bubble-laden turbulent flows using the two-fluid formulation. Phys. Fluids 10(3), 685–697 (1998)CrossRefGoogle Scholar
  18. 18.
    Einstein A.: Investigations on the Theory of the Brownian Movement. Dover Publications Inc., Mineola (1956)zbMATHGoogle Scholar
  19. 19.
    Elghobashi S.: On predicting turbulent laden flows. Appl. Sci. Res. 52, 309–329 (1994)CrossRefGoogle Scholar
  20. 20.
    Erlebacher G., Hussaini M.Y., Kreiss H.O., Sarkar S.: The Analysis and Simulation of Compressible Turbulence. Theor. Comput. Fluid Dyn. 2, 73–95 (1990)zbMATHGoogle Scholar
  21. 21.
    Fernando H.J.S.: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455–493 (1991)CrossRefGoogle Scholar
  22. 22.
    Ferrante A., Elghobashi S.: On the accuracy of the two-fluid formulation in direct numerical simulation of bubble-laden turbulent boundary layers. Phys. Fluids 19(045105), 1–8 (2007)Google Scholar
  23. 23.
    Flatau P.J., Walko R.L., Cotton W.R.: Polynomial fits to saturation vapor pressure. J. Appl. Meteor. 31, 1507 (1992)CrossRefGoogle Scholar
  24. 24.
    Grabowski W.W.: Cumulus entrainment, fine-scale mixing and buoyancy reversal. Q. J. Roy. Meteorol. Soc. 119, 935–956 (1993)CrossRefGoogle Scholar
  25. 25.
    Grabowski W.W.: Entrainment and mixing in buoyancy-revesing convection with applications to cloud-top entrainment instability. Q. J. Roy. Meteorol. Soc. 121, 231–253 (1995)CrossRefGoogle Scholar
  26. 26.
    Gresho P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23, 413–453 (1991)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Kravchenko A.G., Moin P.: On the effect of numerical errors in large-eddy simulations of turbulent flows. J. Comput. Phys. 131, 310–322 (1997)zbMATHCrossRefGoogle Scholar
  28. 28.
    Kuo H., Schubert W.H.: Stability of cloud-topped boundary layers. Q. J. Roy. Meteorol. Soc. 114, 887–916 (1988)CrossRefGoogle Scholar
  29. 29.
    Kurowski M.J., Malinowski S.P., Grabowski W.: A numerical investigation of entrainment and transport within a stratocumulus-topped boundary layer. Q. J. Roy. Meteorol. Soc. 135, 77–92 (2009)CrossRefGoogle Scholar
  30. 30.
    Lehmann K., Siebert H., Wendish M., Shaw R.: Evidence for inertial droplet clustering in weakly turbulent clouds. Tellus B 59(1), 57–65 (2007)CrossRefGoogle Scholar
  31. 31.
    Lele S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lodato G., Domingo P., Vervisch L.: Three-dimensional boundary conditions for direct and large eddy simulation of compressible viscous flows. J. Comput. Phys. 227, 5105–5143 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Mashayek F.: Droplet–turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J. Fluid Mech. 367, 163–203 (1998)zbMATHCrossRefGoogle Scholar
  34. 34.
    Maxey M., Riley J.: Equations of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)zbMATHCrossRefGoogle Scholar
  35. 35.
    Mellado J.P., Sarkar S., Zhou Y.: Large-eddy simulation of Rayleigh-Taylor turbulence with compressible miscible fluids. Phys. Fluids 17, 076,101 (2005)CrossRefGoogle Scholar
  36. 36.
    Mellado J.P., Stevens B., Schmidt H., Peters N.: Buoyancy reversal in cloud-top mixing layers. Q. J. Roy. Meteorol. Soc. 135, 963–978 (2009)CrossRefGoogle Scholar
  37. 37.
    Mellado J.P., Wang L., Peters N.: Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech. 626, 333–365 (2009)zbMATHCrossRefGoogle Scholar
  38. 38.
    Millán, G.: Aerothermochemistry. Tech. rep., INTA, Madrid . A report based on the course conducted by Prof. Theodore von Kármán at the university of Paris (1958)Google Scholar
  39. 39.
    Moin P., Mahesh K.: Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539–578 (1998)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Ooyama K.V.: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci. 47, 2580–2593 (1990)CrossRefGoogle Scholar
  41. 41.
    Ooyama K.V.: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci. 58, 2073–2102 (2001)CrossRefGoogle Scholar
  42. 42.
    Pantano C., Sarkar S., Williams F.A.: Mixing of a conserved scalar in a turbulent reacting shear layer. J. Fluid Mech. 481, 291–328 (2003)zbMATHCrossRefGoogle Scholar
  43. 43.
    Peters N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)zbMATHCrossRefGoogle Scholar
  44. 44.
    Ramshaw J.D.: Brownian motion in a moving fluid. Phys. Fluids 22(9), 1595–1601 (1979)zbMATHCrossRefGoogle Scholar
  45. 45.
    Ramshaw J.D.: Brownian motion in multiphase flow. Theor. Comput. Fluid Dynamics 14, 195–202 (2000)zbMATHCrossRefGoogle Scholar
  46. 46.
    Randall D.A.: Conditional instability of the first kind upside-down. J. Atmos. Sci. 37, 125–130 (1980)CrossRefGoogle Scholar
  47. 47.
    Satoh M.: Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Weather Rev. 131, 1033–1050 (2003)CrossRefGoogle Scholar
  48. 48.
    Shaw R.A.: Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183–227 (2003)CrossRefGoogle Scholar
  49. 49.
    Shy S.S., Breidenthal R.E.: Laboratory experiments on the cloud-top entrainment instability. J. Fluid Mech. 214, 1–15 (1990)CrossRefGoogle Scholar
  50. 50.
    Siems S.T., Bretherton C.S.: A numerical investigation of cloud-top entrainment instability and related experiments. Q. J. Roy. Meteorol. Soc. 118, 787–818 (1992)CrossRefGoogle Scholar
  51. 51.
    Siems S.T., Bretherton C.S., Baker M.B., Shy S., Breidenthal R.E.: Buoyancy reversal and cloud-top entrainment instability. Q. J. Roy. Meteorol. Soc. 116, 705–739 (1990)CrossRefGoogle Scholar
  52. 52.
    Spyksma K., Bartello P., Yau M.K.: A Boussinesq moist turbulence model. J. Turbulence 7(32), 1–24 (2006)MathSciNetGoogle Scholar
  53. 53.
    Squires K., Eaton J.: Preferential concentration of particles by turbulence. Phys. Fluids A 3(5), 1169–1178 (1991)CrossRefGoogle Scholar
  54. 54.
    Stevens B.: Entrainment in stratocumulus-topped mixed layers. Q. J. Roy. Meteorol. Soc. 128, 2663–2690 (2002)CrossRefGoogle Scholar
  55. 55.
    Stevens B.: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33, 605–643 (2005)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Stevens B., Lenschow D.H., Faloona I., Moeng C.H., Lilly D.K., Blomquist B., Vali G., Bandy A., Campos T., Gerber H., Haimov S., Morley B., Thorton C.: On entrainment rates in nocturnal marine stratocumulus. Q. J. Roy. Meteorol. Soc. 129(595), 3469–3493 (2003)CrossRefGoogle Scholar
  57. 57.
    Thompson K.W.: Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89, 439–461 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Wang L., Maxey M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68 (1993)CrossRefGoogle Scholar
  59. 59.
    Williams F.A.: Combustion Theory, 2nd edn. Addison Wesley, New York (1985)Google Scholar
  60. 60.
    Wilson, R.V., Demuren, A.O., Carpenter, M.: Higher-order compact schemes for numerical simulation of incompressible flows. Tech. Rep. CR-1998-206922, NASA Langley Research Center (1998)Google Scholar
  61. 61.
    Yamaguchi T., Randall D.A.: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci. 65, 1481–1504 (2008)CrossRefGoogle Scholar
  62. 62.
    Zhang D.Z., Prosperetti A.: Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Int. J. Multiph. Flow 23(3), 425–453 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Juan Pedro Mellado
    • 1
    Email author
  • Bjorn Stevens
    • 2
    • 3
  • Heiko Schmidt
    • 4
  • Norbert Peters
    • 1
  1. 1.Institut für Technische VerbrennungRWTH Aachen UniversityAachenGermany
  2. 2.Max Planck Institute for MeteorologyHamburgGermany
  3. 3.Department of Atmospheric SciencesUC Los AngelesLos AngelesUSA
  4. 4.Zuse Institute, FU BerlinBerlinGermany

Personalised recommendations