Sharp vorticity gradients in two-dimensional turbulence and the energy spectrum

  • E. A. Kuznetsov
  • V. Naulin
  • A. H. Nielsen
  • J. Juul Rasmussen
Original Article


Formation of sharp vorticity gradients in two-dimensional (2D) hydrodynamic turbulence and their influence on the turbulent spectra are considered. The analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines is developed and compressibility of this mapping appears as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k −3 at large k, which appear to take the same form as the Kraichnan spectrum for the enstrophy cascade. For turbulence with weak anisotropy the k dependence of the spectrum due to the sharp gradients coincides with the Saffman spectrum: E(k) ~ k −4. Numerical investigations of decaying turbulence reveal exponential growth of di-vorticity with a spatial distributed along straight lines. Thus, indicating strong anisotropy and accordingly the spectrum is close to the k −3-spectrum.


Turbulence Di-vorticity Euler equations Kraichnan and Saffman spectra 


52.30.Cv 47.65.+a 52.35.Ra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kraichnan R.H.: Inertial ranges in 2D turbulence. Phys. Fluids 11, 1417 (1967)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Kraichnan R.H.: Inertial range transfer in two and three-dimensional turbulence. J. Fluid Mech. 47, 525 (1971)zbMATHCrossRefGoogle Scholar
  3. 3.
    Kraichnan R.H.: Kolmogorovs inertial-range theories. J. Fluid Mech. 62, 305 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Saffman P.G.: On the spectrum and decay of random 2D vorticity distributions at large Reynolds number. Stud. Appl. Math. 50, 377 (1971)zbMATHGoogle Scholar
  5. 5.
    Kuznetsov E.A., Naulin V., Nielsen A.H., Juul Rasmussen J.: Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence. Phys. Fluids 19, 105110 (2007)CrossRefGoogle Scholar
  6. 6.
    Ohkitani K.: Wave number space dynamics of enstrophy cascades in a forced two-dimensional turbulence. Phys. Fluids A 3, 1598 (1991)zbMATHCrossRefGoogle Scholar
  7. 7.
    Weiss J.: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D 48, 273 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kuznetsov E.A., Ruban V.P.: Hamiltonian dynamics of vortex lines in hydrodynamic-type systems. JETP Lett. 67, 1076–1081 (1998)CrossRefGoogle Scholar
  9. 9.
    Kuznetsov E.A., Ruban V.P.: Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems. Phys. Rev. E 61, 831–841 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kuznetsov E.A.: Vortex line representation for flows of ideal and viscous fluids. JETP Lett. 76, 346–350 (2002)CrossRefGoogle Scholar
  11. 11.
    Wolibner W.: Un théorème sur l’existence du movement plan d’un fluide parfait, homogène, incompressible, pedant un temp infiniment long. Math. Z. 37, 698 (1933)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kato T.: On classical solutions of 2-dimensional non-stationary Euler equation. Arch. Ration. Mech. Anal. 25, 189 (1967)CrossRefGoogle Scholar
  13. 13.
    Yudovich V.I.: Nonstationary flow of an ideal incompressible liquid. J. Math. Numer. Phys. Math. 6, 1032–1066 (1965)Google Scholar
  14. 14.
    Rose H.A., Sulem P.L.: Fully developed turbulence and statistical mechanics. J. Phys. 39, 441–484 (1978)MathSciNetGoogle Scholar
  15. 15.
    Kida S.: Numerical simulations of two-dimensional turbulence with high-symmetry. J. Phys. Soc. Jpn. 54, 2840 (1985)CrossRefGoogle Scholar
  16. 16.
    Kuznetsov E.A., Passot T., Sulem P.L.: Compressible dynamics of magnetic field lines for incompressible nagnetohydrodynamic flows. Phys. Plasmas 11, 1410 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
  • V. Naulin
    • 2
  • A. H. Nielsen
    • 2
  • J. Juul Rasmussen
    • 2
  1. 1.P.N. Lebedev Physical InstituteMoscowRussia
  2. 2.Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations