Chaotic streamlines in the flow of knotted and unknotted vortices

Original Article


This paper describes the motion and the flow induced by a thin tubular vortex coiled on a torus. The vortex is defined by the number of turns, p, that it makes round the torus symmetry axis and the number of turns, q, that it makes round the torus centerline. All toroidal filamentary vortices are found to progress along and to rotate round the torus symmetry axis in an almost steady manner while approximately preserving their shape. The flow, observed in a frame moving with the vortex, possesses two stagnation points. The stream tube emanating from the forward stagnation point and the stream tube ending at the backward stagnation point transversely intersect along a finite number of streamlines. This produces a three-dimensional chaotic tangle whose geometry depends primarily on the value of p. Inside this chaotic shell there are two major stability tubes: the first one envelopes the vortex whereas the second one runs parallel to it and possesses the same topology. When p > 2 there is an additional stability tube enveloping the torus centerline.


Chaotic Streamlines Filamentary vortices Toroidal knots 


47.32.C- 47.52.+j 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Briggs R.: On phosphoric rings. J. Nat. Phil. Chem. Arts 7, 64 (1804)Google Scholar
  2. 2.
    Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik 55, 25–55 (1858). English translation in Philos. Mag. 33, 485–512 (1867)Google Scholar
  3. 3.
    Kida S.: A vortex filament moving without change of form. J. Fluid Mech. 112, 397–409 (1981)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ricca R., Samuels D., Barenghi C.: Evolution of vortex knots. J. Fluid Mech. 391, 29–44 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Rom-Kedar V., Leonard A., Wiggins S.: An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347–394 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Saffman P.: Vortex Dynamics. Cambridge University Press, Cambridge (1995)Google Scholar
  7. 7.
    Thomson, W. (Lord Kelvin): On vortex atoms. Philos. Mag. 34, 15–24 (1867). Also in Mathematical and Physical Papers (MPP), vol. 4, pp. 1–12Google Scholar
  8. 8.
    Thomson, W. (Lord Kelvin): The translatory velocity of a circular vortex ring. Philos. Mag. 33, 511–512 (1867). Also in MPP, vol. 4, pp. 67–68Google Scholar
  9. 9.
    Thomson, W. (Lord Kelvin): Vortex statics. Proc. R. Soc. Edinburgh 9, 59–73 (1875). Also in MPP, vol. 4, pp. 115–128Google Scholar
  10. 10.
    Wiggins S.: Chaotic Transport in Dynamical Systems. Springer, Berlin (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departamento de Oceanografía FísicaCICESEEnsenadaMexico

Personalised recommendations