Analytic models of heterogenous magnetic fields for liquid metal flow simulations

  • E. V. Votyakov
  • S. C. Kassinos
  • X. Albets-Chico
Original Article


A physically consistent approach is considered for defining an external magnetic field as needed in computational fluid dynamics problems involving magnetohydrodynamics (MHD). The approach results in simple analytical formulae that can be used in numerical studies where an inhomogeneous magnetic field influences a liquid metal flow. The resulting magnetic field is divergence and curl-free, and contains two components and parameters to vary. As an illustration, the following examples are considered: peakwise, stepwise, shelfwise inhomogeneous magnetic fields, and the field induced by a solenoid. Finally, the impact of the streamwise magnetic field component is shown qualitatively to be significant for rapidly changing fields.


Magnetohydrodynamics Liquid metal flow Heterogeneous magnetic field 


47.65.-d 47.80.Cb 47.90.+a 


  1. 1.
    Albets-Chico, X., Radhakrishnan, H., Votyakov, E.V., Kassinos, S.: Effects of the consistency of the magnetic field on direct numerical simulations of liquid metal flow (2009, to be submitted)Google Scholar
  2. 2.
    Alboussiere Th.: A geostrophic-like model for large Hartmann number flows. J. Fluid. Mech. 521, 125–154 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cuevas S., Smolentsev S., Abdou M.: On the flow past a magnetic obstacle. J. Fluid. Mech. 553, 227–252 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cuevas S., Smolentsev S., Abdou M.: Vorticity generation in creeping flow past a magnetic obstacle. Phys. Rev. E 74, 056301 (2006)CrossRefGoogle Scholar
  5. 5.
    Davidson P.: Magnetohydrodynamics in materials processing. Ann. Rev. Fluid Mech. 31, 273–300 (1999)CrossRefGoogle Scholar
  6. 6.
    Davidson P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, London (2001)zbMATHGoogle Scholar
  7. 7.
    Hartmann J., Lazarus F.: Slow steady flows of a conducting fluid at high hartmann numbers. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15, 1 (1937)Google Scholar
  8. 8.
    Jackson J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  9. 9.
    Kulikovskii, A.G.: Slow steady flows of a conducting fluid at high hartmann numbers. Izv. Akad. Nauk. SSSR Mekh. Zhidk. i Gaza (3), 3–10 (1968)Google Scholar
  10. 10.
    Kumamaru H., Kodama S., Hirano H., Itoh K.: Three-dimensional numerical calculations on liquid-metal magnetohydrodynamic flow in magnetic-field inlet-region. J. Nucl. Sci. Technol. 41(5), 624–631 (2004)CrossRefGoogle Scholar
  11. 11.
    Kumamaru H., Shimoda K., Itoh K.: Three-dimensional numerical calculations on liquid-metal magneto-hydrodynamic flow through circular pipe in magnetic-field inlet-region. J. Nucl. Sci. Technol. 44(5), 714–722 (2007)CrossRefGoogle Scholar
  12. 12.
    McCaig M.: Permanent Magnets in Theory and Practice. Wiley, New York (1977)Google Scholar
  13. 13.
    Molokov S., Reed C.B.: Liquid metal magnetohydrodynamic flows in circular ducts at intermediate hartmann numbers and interaction parameters. Magnetohydrodynamics 39(4), 539–546 (2003)Google Scholar
  14. 14.
    Molokov S., Reed C.B.: Parametric study of the liquid metal flow in a straight insulated circular duct in a strong nonuniform magnetic field. Fusion Sci. Technol. 43, 200–216 (2003)Google Scholar
  15. 15.
    Ni M.-J., Munipalli R., Huang P., Morley N.B., Abdou M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic reynolds number. Part II: on an arbitrary collocated mesh. J. Comput. Phys. 227(1), 205–228 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Fast Fourier Transform. In: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 3rd edn, Ch. 12.2 , pp. 498. Cambridge University Press, Cambridge (2007); see also
  17. 17.
    Reed, C.B., Picologlou, B.F., Hua, T.Q., Walker, J.S.: Alex results, a comparison of measurements from round and a rectangular duct with 3-d code predictions. In: IEEE 12th Symposium on Fusion Engineering, pp. 1267–1270 (1987)Google Scholar
  18. 18.
    Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Analy. Chem. 36, 1627–1639 (1964); see also
  19. 19.
    Sterl A.: Numerical simulation of liquid-metal MHD flows in rectangular ducts. J. Fluid. Mech. 216, 161–191 (1990)zbMATHCrossRefGoogle Scholar
  20. 20.
    Thess A., Votyakov E.V., Kolesnikov Y.: Lorentz force velocimetry. Phys. Rev. Lett. 96, 164501 (2006)CrossRefGoogle Scholar
  21. 21.
    Todd L.: Magnetohydrodynamic flow along cylindrical pipes under non-uniform transverse magnetic fields. J. Fluid. Mech. 31(2), 321–342 (1968)zbMATHCrossRefGoogle Scholar
  22. 22.
    Votyakov E.V., Kolesnikov Y., Andreev O., Zienicke E., Thess A.: Structure of the wake of a magnetic obstacle. Phys. Rev. Lett. 98(14), 144504 (2007)CrossRefGoogle Scholar
  23. 23.
    Votyakov E.V., Zienicke E., Kolesnikov Y.: Constrained flow around a magnetic obstacle. J. Fluid. Mech. 610, 131–156 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • E. V. Votyakov
    • 1
  • S. C. Kassinos
    • 1
  • X. Albets-Chico
    • 1
  1. 1.Computational Science Laboratory UCY-CompSci, Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations