On instability of elliptical hetons

  • Mikhail SokolovskiyEmail author
  • Jacques Verron
  • Xavier Carton
  • Vladimir Gryanik
Original Article


Using the method of contour surgery, we examine the evolution of an initially vertically aligned elliptical heton. A classification of quasi-stable and unstable regimes for the case of two-layered vortex structure is suggested.


Elliptical vortex Vortex instability Heton 


47.32.C 47.20.Cq 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirchhoff G.: Vorlesungen über matematische Physik: Mechanik. Taubner, Leipzig (1876)Google Scholar
  2. 2.
    Love A.E.H.: On the stability of certain vortex motion. Proc. Lond. Math. Soc. 25, 18–42 (1893)CrossRefGoogle Scholar
  3. 3.
    Mitchell T.B., Rossi L.F.: The evolution of Kirchhoff elliptical vortices. Phys. Fluids 20, 054103 (2008)CrossRefGoogle Scholar
  4. 4.
    Chaplygin S.A.: On a pulsating cylindrical vortex. Trans. Phys. Sect. Imperial Moscow Soc. Frends Nat. Sci. 10, 13–22 (1899)Google Scholar
  5. 5.
    Meleshko V.V., van Heijst G.J.F.: On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech. 272, 157–182 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kida S.: Motion of an elliptical vortex in an uniform shear flow. J. Phys. Soc. Japan 50, 3517–3520 (1981)CrossRefGoogle Scholar
  7. 7.
    Dritschel D.G.: The stability of elliptical vortices in an external straining flow. J. Fluid Mech. 210, 223–261 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dhanak M.R., Marshall M.P.: Motion of an elliptical vortex under applied periodic strain. Phys. Fluids A5, 1224–1230 (1993)Google Scholar
  9. 9.
    Legras B., Dritschel D.G.: The elliptical model of two-dimensional vortex dynamics. I. The basic state. Phys. Fluids A3, 845–854 (1991)MathSciNetGoogle Scholar
  10. 10.
    Polvani L.M., Flierl G.R.: Generalized Kirchhoff vortices. Phys. Fluids 29, 2376–2379 (1986)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kozlov V.F.: Model of two-dimensional vortex motion with an entrainment mechanism. Fluid Dyn. 27, 793–798 (1991)CrossRefGoogle Scholar
  12. 12.
    Pedlosky J.: Geophysical Fluid Dynamics, 2nd edn. Springer, Berlin (1987)zbMATHGoogle Scholar
  13. 13.
    Hogg N.G., Stommel H.M.: The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow. Proc. R. Soc. Lond. A397, 1–20 (1985)Google Scholar
  14. 14.
    Kozlov V.F., Makarov V.G., Sokolovskiy M.A.: A numerical model of baroclinic instability of axially symmetric vortices in a two-layer ocean. Izvestiya Atmos. Ocean. Phys. 22, 868–874 (1986)Google Scholar
  15. 15.
    Pedlosky J.: The instability of continuous heton clouds. J. Atmos. Sci. 42, 1477–1486 (1985)CrossRefGoogle Scholar
  16. 16.
    Helfrich K.R., Send U.: Finite-amplitude evolution of two-layer geostrophic vortices. J. Fluid Mech. 197, 331–348 (1988)zbMATHCrossRefGoogle Scholar
  17. 17.
    Makarov V.G.: Computational algorithm of the contour dynamics method with changeable topology of domains under study. Model. Mech. 5(22), 83–95 (1991) (in Russian)Google Scholar
  18. 18.
    Kozlov V.F., Makarov V.G.: Evolution modelling of unstable geostrophic eddies in a barotropic ocean. Oceanology 24, 737–743 (1984)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mikhail Sokolovskiy
    • 1
    Email author
  • Jacques Verron
    • 2
  • Xavier Carton
    • 3
  • Vladimir Gryanik
    • 4
  1. 1.Water Problems Institute of RASMoscowRussia
  2. 2.Laboratoire des Ecoulements Géophysiques et IndustrielsUMR 5519, CNRSGrenoble CedexFrance
  3. 3.Laboratoire de Physique des OcéansUFR Sciences, UBOBrestFrance
  4. 4.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations