On instability of elliptical hetons

  • Mikhail Sokolovskiy
  • Jacques Verron
  • Xavier Carton
  • Vladimir Gryanik
Original Article

Abstract

Using the method of contour surgery, we examine the evolution of an initially vertically aligned elliptical heton. A classification of quasi-stable and unstable regimes for the case of two-layered vortex structure is suggested.

Keywords

Elliptical vortex Vortex instability Heton 

PACS

47.32.C 47.32.cd 47.20.Cq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirchhoff G.: Vorlesungen über matematische Physik: Mechanik. Taubner, Leipzig (1876)Google Scholar
  2. 2.
    Love A.E.H.: On the stability of certain vortex motion. Proc. Lond. Math. Soc. 25, 18–42 (1893)CrossRefGoogle Scholar
  3. 3.
    Mitchell T.B., Rossi L.F.: The evolution of Kirchhoff elliptical vortices. Phys. Fluids 20, 054103 (2008)CrossRefGoogle Scholar
  4. 4.
    Chaplygin S.A.: On a pulsating cylindrical vortex. Trans. Phys. Sect. Imperial Moscow Soc. Frends Nat. Sci. 10, 13–22 (1899)Google Scholar
  5. 5.
    Meleshko V.V., van Heijst G.J.F.: On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech. 272, 157–182 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kida S.: Motion of an elliptical vortex in an uniform shear flow. J. Phys. Soc. Japan 50, 3517–3520 (1981)CrossRefGoogle Scholar
  7. 7.
    Dritschel D.G.: The stability of elliptical vortices in an external straining flow. J. Fluid Mech. 210, 223–261 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dhanak M.R., Marshall M.P.: Motion of an elliptical vortex under applied periodic strain. Phys. Fluids A5, 1224–1230 (1993)Google Scholar
  9. 9.
    Legras B., Dritschel D.G.: The elliptical model of two-dimensional vortex dynamics. I. The basic state. Phys. Fluids A3, 845–854 (1991)MathSciNetGoogle Scholar
  10. 10.
    Polvani L.M., Flierl G.R.: Generalized Kirchhoff vortices. Phys. Fluids 29, 2376–2379 (1986)MATHCrossRefGoogle Scholar
  11. 11.
    Kozlov V.F.: Model of two-dimensional vortex motion with an entrainment mechanism. Fluid Dyn. 27, 793–798 (1991)CrossRefGoogle Scholar
  12. 12.
    Pedlosky J.: Geophysical Fluid Dynamics, 2nd edn. Springer, Berlin (1987)MATHGoogle Scholar
  13. 13.
    Hogg N.G., Stommel H.M.: The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow. Proc. R. Soc. Lond. A397, 1–20 (1985)Google Scholar
  14. 14.
    Kozlov V.F., Makarov V.G., Sokolovskiy M.A.: A numerical model of baroclinic instability of axially symmetric vortices in a two-layer ocean. Izvestiya Atmos. Ocean. Phys. 22, 868–874 (1986)Google Scholar
  15. 15.
    Pedlosky J.: The instability of continuous heton clouds. J. Atmos. Sci. 42, 1477–1486 (1985)CrossRefGoogle Scholar
  16. 16.
    Helfrich K.R., Send U.: Finite-amplitude evolution of two-layer geostrophic vortices. J. Fluid Mech. 197, 331–348 (1988)MATHCrossRefGoogle Scholar
  17. 17.
    Makarov V.G.: Computational algorithm of the contour dynamics method with changeable topology of domains under study. Model. Mech. 5(22), 83–95 (1991) (in Russian)Google Scholar
  18. 18.
    Kozlov V.F., Makarov V.G.: Evolution modelling of unstable geostrophic eddies in a barotropic ocean. Oceanology 24, 737–743 (1984)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mikhail Sokolovskiy
    • 1
  • Jacques Verron
    • 2
  • Xavier Carton
    • 3
  • Vladimir Gryanik
    • 4
  1. 1.Water Problems Institute of RASMoscowRussia
  2. 2.Laboratoire des Ecoulements Géophysiques et IndustrielsUMR 5519, CNRSGrenoble CedexFrance
  3. 3.Laboratoire de Physique des OcéansUFR Sciences, UBOBrestFrance
  4. 4.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations