Separation vortices and pattern formation

Original Article

Abstract

In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–Pohlhausen approach to stationary boundary layers with free surfaces going through separation, and thus obtain a quantitative theory of the simplest type of hydraulic jump, where a single separation vortex is present outside the jump. A second type of jump, where an additional roller appears at the surface, cannot be captured by this approach and has not been given an adequate theoretical description. Such a model is needed to describe “polygonal” hydraulic jumps, which occur by spontaneous symmetry breaking of the latter state. Time-dependent separation is of importance in the formation of sand ripples under oscillatory flow, where the separation vortices become very strong. In this case no simple theory exists for the determination of the location and strengths of separation vortices over a wavy bottom of arbitrary profile. We have, however, recently suggested an amplitude equation describing the long-time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge.

Keywords

Separation Vortex formation Hydraulic jump Sand ripples Vortex street 

PACS

47.54.-r 47.32.ck 47.32.Ff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tani I.: Water jump in the boundary layer. J. Phys. Soc. Japan 4, 212 (1949)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Watson E.J.: The radial spread of a liquid jet over a horizontal plate. J. Fluid Mech. 20, 481 (1964)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bohr T., Dimon P., Putkaradze V.: Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635 (1993)MATHCrossRefGoogle Scholar
  4. 4.
    Rayleigh L.: On the theory of long waves and bores. Proc. R. Soc. Lond. A 90, 324 (1914)CrossRefGoogle Scholar
  5. 5.
    Watanabe S., Putkaradze V., Bohr T.: Integral methods for shallow free-surface flows with separation. J. Fluid Mech. 480, 233 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonn D., Andersen A., Bohr T.: Hydraulic jumps in a channel. J. Fluid Mech. 618, 71 (2009)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bohr T., Ellegaard C., Espe Hansen A., Haaning A.: Hydraulic jumps, flow separation and wave breaking: an experimental study. Physica B 228, 1 (1996)CrossRefGoogle Scholar
  8. 8.
    Ellegaard C., Espe Hansen A., Haaning A., Hansen K., Marcussen A., Bohr T., Lundbek Hansen J., Watanabe S.: Creating corners in kitchen sinks. Nature 392, 767 (1998)CrossRefGoogle Scholar
  9. 9.
    Bush J.W.M., Aristoff J.M., Hosoi A.E.: An experimental investigation of the stability of the circular hydraulic jump. J. Fluid Mech. 558, 33 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Ayrton H.: The origin and growth of ripple-mark. Proc. R. Soc. Lond. A 84, 285 (1910)CrossRefGoogle Scholar
  11. 11.
    Bagnold R.A.: Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc. R. Soc. Lond. A 187, 1 (1946)CrossRefGoogle Scholar
  12. 12.
    Stegner A., Wesfreid J.E.: Dynamical evolution of sand ripples under water. Phys. Rev. E 60, R3487 (1999)CrossRefGoogle Scholar
  13. 13.
    Scherer M.A., Melo F., Marder M.: Sand ripples in an oscillating annular sand–water cell. Phys. Fluids 11, 58 (1999)MATHCrossRefGoogle Scholar
  14. 14.
    Rousseaux G., Stegner A., Wesfreid J.E.: Wavelength selection of rolling-grain ripples in the laboratory. Phys. Rev. E 69, 031307 (2004)CrossRefGoogle Scholar
  15. 15.
    Schnipper T., Mertens K., Ellegaard C., Bohr T.: Amplitude equation and long-range interactions in underwater sand ripples in one dimension. Phys. Rev. E 78, 047301 (2008)CrossRefGoogle Scholar
  16. 16.
    Cross M., Hohenberg P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 852 (1993)CrossRefGoogle Scholar
  17. 17.
    Blondeaux P.: Sand ripples under sea waves. Part 1. Ripple formation. J. Fluid Mech. 218, 1 (1990)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Krug J.: Coarsening of vortex ripples in sand. Adv. Complex Syst. 4, 353 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Rousseaux G., Caps H., Wesfreid J.-E.: Granular size segregation in underwater sand ripples. Eur. Phys. J. E 13, 213 (2004)CrossRefGoogle Scholar
  20. 20.
    Politi P.: Kink dynamics in a one-dimensional growing surface. Phys. Rev. E 58, 281 (1998)CrossRefGoogle Scholar
  21. 21.
    Politi P., Misbah C.: Nonlinear dynamics in one dimension: a criterion for coarsening and its temporal law. Phys. Rev. E 73, 036133 (2006)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Hansen J.L., van Hecke M., Haaning A., Ellegaard C., Andersen K.H., Bohr T., Sams T.: Instabilities in sand ripples. Nature 410, 324 (2001)CrossRefGoogle Scholar
  23. 23.
    Hansen J.L., van Hecke M., Haaning A., Ellegaard C., Andersen K.H., Bohr T., Sams T.: Stability balloon for two-dimensional vortex ripple patterns. Phys. Rev. Lett. 87, 204301 (2001)CrossRefGoogle Scholar
  24. 24.
    Couder Y., Basdevant C.: Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech. 173, 225 (1986)CrossRefGoogle Scholar
  25. 25.
    Gharib M., Derango P.: A liquid film (soap film) tunnel to study two-dimensional laminar and turbulent shear flows. Physica D 37, 406 (1989)CrossRefGoogle Scholar
  26. 26.
    Zhang J., Childress S., Libchaber A., Shelley M.: Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835 (2000)CrossRefGoogle Scholar
  27. 27.
    Williamson C.H.K., Roshko A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355 (1988)CrossRefGoogle Scholar
  28. 28.
    Koochesfahani M.M.: Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27, 1200 (1989)CrossRefGoogle Scholar
  29. 29.
    Lai J.C.S., Platzer M.F.: Jet characteristics of a plunging airfoil. AIAA J. 37, 1529 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Physics and Center for Fluid DynamicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations