Advertisement

Large-eddy simulation of flow separation on an airfoil at a high angle of attack and Re = 105 using Cartesian grids

  • Sven Eisenbach
  • Rainer Friedrich
Original Article

Abstract

Incompressible flow separating from the upper surface of an airfoil at an 18° angle of attack and a Reynolds number of Re = 105, based on the freestream velocity and chord length c, is studied by the means of large-eddy simulation (LES). The numerical method is based on second-order central spatial discretization on a Cartesian grid using an immersed boundary technique. The results are compared with an LES using body-fitted nonorthogonal grids and with experimental data.

Keywords

LES Airfoil Flow separation 

PACS

47.27.ep 47.32.Ff 47.85.Gj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidson, L., Cokljat, D., Fröhlich, J., Leschziner, M., Mellen, C., Rodi, W. (eds.): LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil: Results of the Projects LESFOIL Supported by the Europan Union 1998–2001. Springer, Berlin (2003)Google Scholar
  2. 2.
    Drela, M.: XFOIL 6.94. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. http://raphael.mit.edu/xfoil, Version of 18.12.2001
  3. 3.
    Stone H.L. (1968). Iterative solutions of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5: 530–558 zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Meneveau C., Lund T.S. and Cabot W.H. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319: 353–385 zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Evans, G.: Grobstruktursimulation der abgelösten Strömung um ein angestelltes Tragflügelprofil. Dissertation, Fachgebiet Strömungsmechanik, Technische Universität München (2004)Google Scholar
  6. 6.
    Germano M., Piomelli U., Moin P. and Cabot W.H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3: 1760–1765 zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Gullbrand J., Bai X.S. and Fuchs L. (1997). High-order boundary corrections for computation of turbulent flows. In: Taylor, C. and Cross, J.T. (eds) Numerical Methods in Laminar and Turbulent Flow, vol. 10., pp 141–152. Pineridge Press, Swansea Google Scholar
  8. 8.
    Tremblay, F.: Direct and large-eddy simulation of flow around a circular cylinder at subcritical Reynolds numbers. PhD thesis, Fachgebiet Strömungsmechanik, Technische Universität München (2001)Google Scholar
  9. 9.
    Jovičić N. and Breuer M. (2004). Separated flow past an airfoil at high angle of attack. In: Wagner, S., Hanke, W., Bode, A. and Durst, F. (eds) High Performance Computing in Science and Engineering., pp 93–105. Springer, Berlin Google Scholar
  10. 10.
    Kindler, K., Kreplin, H.-P., Ronneberger, D.: Experimentelle Untersuchung kohärenter Strukturen in kritischen Tragflügelströmungen. Technical report DLR-IB 224-03 A 11, Institut für Aerodynamik und Strömungstechnik, DLR Göttingen (2003)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Technische Universität MünchenFachgebiet StrömungsmechanikGarchingGermany

Personalised recommendations