Theoretical and Computational Fluid Dynamics

, Volume 21, Issue 6, pp 435–446 | Cite as

Flow and heat transfer in a moving fluid over a moving flat surface

Original Article


In this paper, a numerical analysis of the momentum and heat transfer of an incompressible fluid past a parallel moving sheet based on composite reference velocity U is carried out. A single set of equations has been formulated for both momentum and thermal boundary layer problems containing the following parameters: r the ratio of the free stream velocity to the composite reference velocity, σ (Prandtl number) the ratio of the momentum diffusivity of the fluid to its thermal diffusivity, and Ec(Eck) (Eckert number). The present study has been carried out in the domain 0 ≤  r ≤  1. It is found that the direction of the wall shear changes in such an interval and an increase of the parameter r yields an increase in temperature.


Flat-plate boundary layer Parallel moving surface Heat transfer Viscous dissipation 


44.20.+b 47.27.ek 47.11.-j 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakiadis B.C. (1961). Boundary-layer behaviour on continuous solid surfaces.. A.I.Ch.E.Jl. 7: 26–28 Google Scholar
  2. 2.
    Crane L.J. (1970). Flow past a stretching plate. Z. Angew. Math. Phys. 21: 645–647 CrossRefGoogle Scholar
  3. 3.
    Gupta P.S. and Gupta A.S. (1977). Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55: 744–746 CrossRefGoogle Scholar
  4. 4.
    Soundalgekar V.M. (1974). Stokes problem for elastic-viscous fluid. Rheol. Acta 13: 177–179 CrossRefGoogle Scholar
  5. 5.
    Siddappa B. and Khapate B.S. (1976). Rivlin-Ericksen fluid flow past a stretching sheet. Rev. Roum. Sci. Tech. Mech. (Appl.) 2: 497–505 Google Scholar
  6. 6.
    Danberg J.E. and Fansler K.S. (1976). A non similar moving wall boundary-layer problem. Q. Appl. Math. 34: 305–309 MATHGoogle Scholar
  7. 7.
    Rao J.H., Jeng D.R. and De Witt K.J. (1999). Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall. Int. J. Heat Mass Transf. 42: 2837–2847 MATHCrossRefGoogle Scholar
  8. 8.
    Magyari E. and Keller B. (2000). Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B Fluids 10: 109–122 MathSciNetGoogle Scholar
  9. 9.
    Cortell R. (1994). Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int. J. Nonlinear Mech. 29: 155–161 MATHCrossRefADSGoogle Scholar
  10. 10.
    Cortell R. (1993). Numerical solutions for the flow of a fluid of grade three past an infinite porous plate. Int. J. Nonlinear Mech. 28: 623–626 MATHCrossRefADSGoogle Scholar
  11. 11.
    Siekman J. (1962). The laminar boundary layer along a flat plate. Z. Flugwiss. 10: 278–281 Google Scholar
  12. 12.
    Klemp J.B. and Acrivos A. (1976). The moving-wall boundary layer with reverse flow. J. Fluid Mech. 76: 363–381 MATHCrossRefADSGoogle Scholar
  13. 13.
    Abdulhafez T.A. (1985). Skin friction and heat transfer on a continuous flat surface moving in a parallel free stream. Int. J. Heat Mass Transf. 28: 1234–1237 CrossRefGoogle Scholar
  14. 14.
    Chappidi P.R. and Gunnerson F.S. (1989). Analysis of heat and momentum transport along a moving surface. Int. J. Heat Mass Transf. 32: 1383–1386 CrossRefGoogle Scholar
  15. 15.
    Afzal N., Baderuddin A. and Elgarvi A.A. (1993). Momentum and heat transport on a continuous flat surface moving in a parallel stream. Int. J. Heat Mass Transf. 36: 3399–3403 MATHCrossRefGoogle Scholar
  16. 16.
    Hussaini M.Y., Lakin W.D. and Nachman A. (1987). On similarity solutions of a boundary-layer problem with an upstream moving wall. SIAM J. Appl. Math. 47: 699–709 MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Lin H.T. and Haung S.F. (1994). Flow and heat transfer of plane surface moving in parallel and reversely to the free stream. Int. J. Heat Mass Transf. 37: 333–336 MATHADSGoogle Scholar
  18. 18.
    Sparrow E.M. and Abraham J.P. (2005). Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid. Int. J. Heat Mass Transf. 48: 3047–3056 Google Scholar
  19. 19.
    Winter H.H. (1977). Viscous dissipation in shear flows of molten polymers. Adv. Heat Trans. 13: 280 Google Scholar
  20. 20.
    Hutter K. (1983). Theoretical Glaciology. D. Reidel, Dordrecht Google Scholar
  21. 21.
    Celata G.P., Morini G.L., Marconi V., Mc Phail S.J. and Zummo G. (2006). Using viscous heating to determine the friction factor in micro-channels- An Experimental validation. Exp. Therm. Fluid Sci. 30: 725–731 CrossRefGoogle Scholar
  22. 22.
    Cortell R. (2005). Numerical solutions of the classical Blasius flat-plate problem. Appl. Math. Comp. 170: 706–710 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Afzal N. (1983). The cooling of a low heat resistance sheet moving through a fluid. Warme Stoffubertrag 17: 217–219 CrossRefADSGoogle Scholar
  24. 24.
    Afzal N. (1993). Heat transfer from a stretching surface. Int. J. Heat Mass Transf. 36: 1128–1131 MATHCrossRefGoogle Scholar
  25. 25.
    Afzal N. (2003). Momentum transfer on power law stretching plate with free stream pressure gradient. Int. J. Eng. Sci. 41: 1197–1207 CrossRefGoogle Scholar
  26. 26.
    Cortell R. (1993). Application of the fourth-order Runge–Kutta method for the solution of high-order general initial value problems. Comput. Struct. 49: 897–900 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Cortell R. (2005). Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn. Res. 37: 231–245 CrossRefMATHADSGoogle Scholar
  28. 28.
    Kays W.M. and Crawford M.E. (1987). Convective Heat and Mass Transfer, 2nd edn. McGrawHill, New York Google Scholar
  29. 29.
    Tsou F., Sparrow E. and Goldstein R. (1967). Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Heat Mass Transf. 10: 219–235 CrossRefGoogle Scholar
  30. 30.
    Sadeghy K. and Sharifi M. (2004). Local similarity solution for the flow of a “second grade” viscoelastic fluid above a moving plate. Int. J. Nonlinear Mech. 39: 1265–1273 MATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Departamento de Física Aplicada, Escuela Técnica Superior de Ingenieros de CaminosCanales y Puertos, Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations