Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 21, Issue 5, pp 369–380 | Cite as

Peristaltic flow of a Johnson-Segalman fluid through a deformable tube

  • Yongqi WangEmail author
  • Tasawar Hayat
  • Kolumban Hutter
Original Article

Abstract

To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson–Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and small Weissenberg number. The expressions for the axial velocity, pressure gradient, and pressure rise per wavelength are also constructed. The general solution of the governing nonlinear partial differential equation is given using a transformation method. The numerical solution is also obtained and is compared with the perturbation solution. Numerical results are demonstrated for various values of the physical parameters of interest.

Keywords

Peristaltic flow Perturbation solution Transformation method Numerical method Johnson–Segalman fluid 

PACS

47.50.-d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Latham, T.W.: Fluid motion in a peristaltic pump. MS Thesis, M III Cambridge, Mass (1966)Google Scholar
  2. 2.
    Jafrin M.Y. and Shapiro A.H. (1971). Peristaltic pumping. Ann. Rev. Fluid Mech. 3: 13–35 CrossRefADSGoogle Scholar
  3. 3.
    Burns J.C. and Parkes J. (1967). Peristaltic motion. J. Fluid Mech. 29: 731–743 CrossRefADSGoogle Scholar
  4. 4.
    Barton C. and Raymor S. (1968). Peristaltic flows in tubes. Bull. Math. Bio. Phy. 30: 663–680 zbMATHCrossRefGoogle Scholar
  5. 5.
    Chow T.S. (1970). Peristaltic transport in a circular cylindrical pipe. J. Appl. Mech. 37: 901–906 zbMATHGoogle Scholar
  6. 6.
    Shapiro A.H., Jaffrin M.Y. and Weinberg S.L. (1969). Peristaltic pumping with long wavelength at low Roynolds number. J. Fluid Mech. 37: 799–825 CrossRefADSGoogle Scholar
  7. 7.
    Jaffrin M.Y. (1973). Inertia and streamline curvature effects on peristaltic pumping. Int. J. Eng. Sci. 11: 681–699 CrossRefGoogle Scholar
  8. 8.
    Liron N. (1976). On peristaltic flow and its efficiency. Bull. Math. Biol. 38: 573–596 zbMATHGoogle Scholar
  9. 9.
    Takabatake S. and Ayukawa K. (1982). Numerical study of two-dimensional peristaltic flows. J. Fluid Mech. 122: 439–465 zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Radhakrishnamacharya G. (1982). Long wavelength approximation to peristaltic motion of power law fluid. Rheol. Acta 21: 30–35 zbMATHCrossRefGoogle Scholar
  11. 11.
    Raju K.K. and Devanathan R. (1972). Peristaltic motion of a non-Newtonian fluid. Rheol. Acta 11: 170–178 zbMATHCrossRefGoogle Scholar
  12. 12.
    Raju K.K. and Devanathan R. (1974). Peristaltic motion of a non-Newtonian fluid, Part II. Viscoelastic fluid. Rheol. Acta 13: 944–948 zbMATHCrossRefGoogle Scholar
  13. 13.
    Srivastava L.M. (1986). Peristaltic transport of a couple stress fluid. Rheol. Acta 25: 638–641 CrossRefGoogle Scholar
  14. 14.
    Srivastava L.M. and Srivastava V.P. (1988). Peristaltic transport of a power law fluid: application to the ductus efferentes of the reproductive tracts. Rheol. Acta 27: 428–433 CrossRefGoogle Scholar
  15. 15.
    Siddiqui A.M., Provost A. and Schwarz W.H. (1991). Peristaltic pumping of a second order fluid in a planar channel. Rheol. Acta 30: 249–262 CrossRefGoogle Scholar
  16. 16.
    Siddiqui A.M. and Schwarz W.H. (1993). Peristaltic pumping of a third order fluid in a planar channal. Rheol. Acta 32: 47–56 CrossRefGoogle Scholar
  17. 17.
    Siddiqui A.M. and Schwarz W.H. (1994). Peristaltic flow of a second order fluid in tubes. J. Non-Newton. Fluid Mech. 53: 257–284 CrossRefGoogle Scholar
  18. 18.
    Böhme G. and Friedrich R. (1983). Peristaltic flow of viscoelastic liquids. J. Fluid Mech. 128: 109–122 zbMATHCrossRefADSGoogle Scholar
  19. 19.
    Misra J.C. and Pandey S.K. (1999). Peristaltic transport of a non-Newtonian fluid with a peripheral layer. Int. J. Eng. Sci. 37: 1841–1858 CrossRefGoogle Scholar
  20. 20.
    Misra J.C. and Pandey S.K. (2001). Peristaltic flow of a multilayered power-law fluid through a cylindrical tube. Int. J. Eng. Sci. 39: 387–402 CrossRefGoogle Scholar
  21. 21.
    Hayat T., Wang Y., Siddiqui A.M., Hutter K. and Asghar S. (2002). Peristaltic transport of a third order fluid in a circular cylindrical tube. Math. Models Methods Appl. Sci. 12(12): 1691–1706 zbMATHCrossRefGoogle Scholar
  22. 22.
    Hayat T., Wang Y., Siddiqui A.M. and Hutter K. (2003). Peristaltic motion of a Johnson–Segalman fluid in a planar channel. Math. Probl. Eng. 2003(1): 1–23 zbMATHCrossRefGoogle Scholar
  23. 23.
    Kolkka R.W., Malkus D.S., Hansen M.G., Ierly G.R. and Worthing R.A. (1988). Spurt phenomenon of the Johnson–Segalman fluid and related models. J. Non-Newton. Fluid Mech. 29: 303–335 CrossRefGoogle Scholar
  24. 24.
    McLeish T.C.B. and Ball R.C. (1986). A molecular approach to the spurt effect in polymer melt flow. J. Polym. Sci. (B) 24: 1735–1745 Google Scholar
  25. 25.
    Malkus D.S., Nohel J.A. and Plohr B.J. (1990). Dynamics of shear flow of a non-Newtonian fluid. J. Comput. Phys. 87: 464–487 zbMATHCrossRefGoogle Scholar
  26. 26.
    Malkus D.S., Nohel J.A. and Plohr B.J. (1991). Analysis of new phenomenon in shear flow of non-Newtonian fluids. SIAM J. Appl. Math. 51: 899–929 zbMATHCrossRefGoogle Scholar
  27. 27.
    Migler K.B., Hervert H. and Leger L. (1990). Slip transition of a polymer melt under shear stress. Phys. Rev. Lett. 70: 287–290 CrossRefADSGoogle Scholar
  28. 28.
    Migler K.B., Massey G., Hervert H. and Leger L. (1994). The slip transition at the polymer-solid interface. J. Phys. Condens. Matter A 6: 301–304 CrossRefADSGoogle Scholar
  29. 29.
    Ramamurthy A.V. (1986). Wall slip in viscous fluids and the influence of material of construction. J. Rheol. 30: 337–357 CrossRefGoogle Scholar
  30. 30.
    Kraynik M. and Schowalter W.R. (1981). Slip at the wall and extrudate roughness with aqueous solutions of polyvinyl alcohal and sodium borate. J. Rheol. 25: 95–114 CrossRefGoogle Scholar
  31. 31.
    Lim F.J. and Schowalter W.R. (1989). Wall slip of narrow molecular weight distribution polybutadienes. J. Rheol. A. 33: 1359–1382 CrossRefGoogle Scholar
  32. 32.
    Segalman D. and Johnson M.W. Jr. (1977). A model for viscoelastic fluid behaviour which allows non-affine deformation. J. Non-Newton. Fluid Mech. 2: 255–270 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Chair of Fluid Dynamics, Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  2. 2.Institute of Geotechnical EngineeringUniversität für BodenkulturViennaAustria
  3. 3.Mathematics DepartmentQuaid-i-Azam UniversityIslamabadPakistan
  4. 4.VAWETH ZürichZürichSwitzerland

Personalised recommendations