Comparison between three-dimensional linear and nonlinear tsunami generation models

  • Youen Kervella
  • Denys Dutykh
  • Frédéric DiasEmail author
Original Article


The modeling of tsunami generation is an essential phase in understanding tsunamis. For tsunamis generated by underwater earthquakes, it involves the modeling of the sea bottom motion as well as the resulting motion of the water above. A comparison between various models for three-dimensional water motion, ranging from linear theory to fully nonlinear theory, is performed. It is found that for most events the linear theory is sufficient. However, in some cases, more-sophisticated theories are needed. Moreover, it is shown that the passive approach in which the seafloor deformation is simply translated to the ocean surface is not always equivalent to the active approach in which the bottom motion is taken into account, even if the deformation is supposed to be instantaneous.


Tsunami generation Finite-volume method Boundary element method Water waves Potential flow Nonlinear shallow water equations 


91.30.Nw 92.10.hl 92.10.H- 47.11.Df 47.11.Hj 47.35.Bb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Menahem A. and Rosenman M. (1972). Amplitude patterns of tsunami waves from submarine earthquakes. J. Geophys. Res. 77: 3097–3128 CrossRefADSGoogle Scholar
  2. 2.
    Bona J.L., Colin T. and Lannes D. (2005). Long wave approximations for water waves. Arch. Rational Mech. Anal. 178: 373–410 zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bona J.L., Pritchard W.G. and Scott L.R. (1981). An evaluation of a model equation for water waves. Phil. Trans. R. Soc. Lond. A 302: 457–510 ADSMathSciNetGoogle Scholar
  4. 4.
    Dutykh, D., Dias, F.: Water waves generated by a moving bottom. In: Kundu, A. (ed.) Tsunami and nonlinear waves. Springer, Heidelberg (Geo Sc.) (2007)Google Scholar
  5. 5.
    Dutykh D., Dias F. and Kervella Y. (2006). Linear theory of wave generation by a moving bottom. C. R. Acad. Sci. Paris, Ser. I 343: 499–504 zbMATHMathSciNetGoogle Scholar
  6. 6.
    Filon L.N.G. (1928). On a quadrature formula for trigonometric integrals. Proc. R. Soc. Edinburgh 49: 38–47 Google Scholar
  7. 7.
    Fochesato C. and Dias F. (2006). A fast method for nonlinear three-dimensional free-surface waves. Proc. R. Soc. A 462: 2715–2735 CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Geist E.L., Titov V.V. and Synolakis C.E. (2006). Tsunami: wave of change. Sci. Am. 294: 56–63 CrossRefGoogle Scholar
  9. 9.
    Ghidaglia J.-M., Kumbaro A. and Le Coq G. (1996). Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation. C. R. Acad. Sc. Paris, Ser. I 322: 981–988 zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ghidaglia J.-M., Kumbaro A. and Le Coq G. (2001). On the numerical solution to two fluid models via a cell centered finite volume method. Eur. J. Mech. B/Fluids 20: 841–867 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    González F.I., Bernard E.N., Meinig C., Eble M.C., Mofjeld H.O. and Stalin S. (2005). The NTHMP tsunameter network. Nat. Hazards 35: 25–39 CrossRefGoogle Scholar
  12. 12.
    Grilli S., Guyenne P. and Dias F. (2001). A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids 35: 829–867 zbMATHCrossRefGoogle Scholar
  13. 13.
    Grilli S., Vogelmann S. and Watts P. (2002). Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides. Eng. Anal. Bound. Elem. 26: 301–313 zbMATHCrossRefGoogle Scholar
  14. 14.
    Guesmia M., Heinrich P.H. and Mariotti C. (1998). Numerical simulation of the 1969 Portuguese tsunami by a finite element method. Nat. Hazards 17: 31–46 CrossRefGoogle Scholar
  15. 15.
    Hammack J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech. 60: 769–799 zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Hammack J.L. and Segur H. (1974). The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech 65: 289–314 zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Houston, J.R., Garcia, A.W.: Type 16 flood insurance study. USACE WES Report No. H-74-3 (1974)Google Scholar
  18. 18.
    Kajiura K. (1963). The leading wave of tsunami. Bull. Earthquake Res. Inst. Tokyo Univ. 41: 535–571 Google Scholar
  19. 19.
    Kânoglu, K., Synolakis, C.: Initial value problem solution of nonlinear shallow water-wave equations. Phys. Rev. Lett. 97, 148501 (2006)Google Scholar
  20. 20.
    Kirby, J.T.: Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents. In: Lakhan, V.C. (ed.) Advances in Coastal Modelling, pp. 1–41, Elsevier, Amsterdam (2003)Google Scholar
  21. 21.
    Kulikov E.A., Medvedev P.P. and Lappo S.S. (2005). Satellite recording of the Indian Ocean tsunami on December 26, 2004. Doklady Earth Sci. A 401: 444–448 Google Scholar
  22. 22.
    Lay, T., Kanamori, H., Ammon, C.J., Nettles M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekstrom, G., Satake, K., Sipkin, S.: The great Sumatra-Andaman earthquake of 26 December 2004. Science 308, 1127–1133 (2005)Google Scholar
  23. 23.
    LeVeque R.J. (1998). Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146: 346–365 CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Liu, P.L.-F., Liggett, J.A.: Applications of boundary elementmethods to problems of water waves. In: Banerjee PK, Shaw RP (eds.) Developments in boundary element methods, 2nd edn. Applied Science Publishers, England. Chapter 3, 37–67 (1983Google Scholar
  25. 25.
    Nwogu O. (1993). An alternative form of the Boussinesq equations for nearshore wave propagation. Coast. Ocean Eng. 119: 618–638 CrossRefGoogle Scholar
  26. 26.
    Okada Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75: 1135–1154 Google Scholar
  27. 27.
    Peregrine D.H. (1967). Long waves on a beach. J. Fluid Mech. 27: 815–827 zbMATHCrossRefADSGoogle Scholar
  28. 28.
    Synolakis C.E. and Bernard E.N. (2006). Tsunami science before and beyond Boxing Day 2004. Phil. Trans. R. Soc. A 364: 2231–2265 CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Titov V.V. and Synolakis C.E. (1998). Numerical modelling of tidal wave runup. J. Waterway, Port, Coastal, Ocean Eng. 124: 157–171 CrossRefGoogle Scholar
  30. 30.
    Todorovska M.I., Hayir A. and Trifunac M.D. (2002). A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn. Earthq. Eng. 22: 129–141 CrossRefGoogle Scholar
  31. 31.
    Todorovska M.I. and Trifunac M.D. (2001). Generation of tsunamis by a slowly spreading uplift of the sea-floor. Soil Dyn. Earthq. Eng. 21: 151–167 CrossRefGoogle Scholar
  32. 32.
    Tuck, E.O.: Models for predicting tsunami propagation. NSF Workshop on Tsunamis, California, Ed: Hwang L.S., Lee Y.K. Tetra Tech Inc., 43–109 (1979)Google Scholar
  33. 33.
    Tuck E.O. and Hwang L.-S. (1972). Long wave generation on a sloping beach. J. Fluid Mech. 51: 449–461 zbMATHCrossRefADSGoogle Scholar
  34. 34.
    Ursell F. (1953). The long-wave paradox in the theory of gravity waves. Proc. Camb. Phil. Soc. 49: 685–694 zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Villeneuve M. and Savage S.B. (1993). Nonlinear, dispersive, shallow-water waves developed by a moving bed. J. Hydraulic Res. 31: 249–266 CrossRefGoogle Scholar
  36. 36.
    Ward S.N. (2001). Landslide tsunami. J. Geophys. Res. 106: 11201–11215 CrossRefADSGoogle Scholar
  37. 37.
    Wei G., Kirby J.T., Grilli S.T. and Subramanya R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294: 71–92 zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.IFREMER, Laboratoire DYNECO/PHYSEDPlouzanéFrance
  2. 2.CMLA, ENS CachanCNRS, PRES UniverSudCachanFrance

Personalised recommendations