Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 21, Issue 1, pp 39–58 | Cite as

Predicting transport by Lagrangian coherent structures with a high-order method

  • Hayder SalmanEmail author
  • Jan S. Hesthaven
  • Tim Warburton
  • George Haller
Original Article

Abstract

Recent developments in identifying Lagrangian coherent structures from finite-time velocity data have provided a theoretical basis for understanding chaotic transport in general flows with aperiodic dependence on time. As these theoretical developments are extended and applied to more complex flows, an accurate and general numerical method for computing these structures is needed to exploit these ideas for engineering applications. We present an unstructured high-order hp/spectral-element method for solving the two-dimensional compressible form of the Navier–Stokes equations. A corresponding high-order particle tracking method is also developed for extracting the Lagrangian coherent structures from the numerically computed velocity fields. Two different techniques are used; the first computes the direct Lyapunov exponent from an unstructured initial particle distribution, providing easier resolution of structures located close to physical boundaries, whereas the second advects a small material line initialized close to a Lagrangian saddle point to delineate these structures. We demonstrate our algorithm on simulations of a bluff-body flow at a Reynolds number of Re = 150 and a Mach number of M = 0.2 with and without flow forcing. We show that, in the unforced flow, periodic vortex shedding is predicted by our numerical simulations that is in stark contrast to the aperiodic flow field in the case with forcing. An analysis of the Lagrangian structures reveals a transport barrier that inhibits cross-wake transport in the unforced flow. The transport barrier is broken with forcing, producing enhanced transport properties by chaotic advection and consequently improved mixing of advected scalars within the wake.

Keywords

Vortex Vorticity Unstable Manifold Triangular Element Bluff Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aref H., El Naschie M.S. (1995) Chaos Applied to Fluid Mixing. Pergamon, New YorkzbMATHGoogle Scholar
  2. 2.
    Benzi R., Paladin G., Patarnello S., Santangelo P., Vulpiani A. (1988) Self-similar coherent structures in two-dimensional decaying turbulence. J. Phys. A 21, 1221–1237CrossRefADSGoogle Scholar
  3. 3.
    McWilliams J.C. (1984) The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 21–43zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Babiano A., Basdevant C., Le Roy P., Sadourny R. (1990) Relative dispersion in two-dimensional turbulence. J. Fluid Mech. 214, 535–557zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Provenzale A. (1999) Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech. 31, 55–93MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Ottino J.M. (1989) The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, CambridgezbMATHGoogle Scholar
  7. 7.
    Rom-Kedar V., Leonard A., Wiggins S. (1990) An analytical study of transport, mixing, and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347–358zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Rom-Kedar V. (1994) Homoclinic tangles – classification and applications. Nonlinearity 7, 441–473zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Wiggins S. (1992) Chaotic Transport in Dynamical Systems. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  10. 10.
    Malhotra N., Wiggins S. (1998) Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time-dependence, with applications to Rossby wave flow. J. Nonlin. Sci. 8, 401–456zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Coulliette C., Wiggins S. (2001) Intergyre transport in a wind-driven, quasi-geostrophic double gyre: an application of lobe dynamics. Nonlin. Proc. Geophys. 8, 69ADSGoogle Scholar
  12. 12.
    Haller G., Poje A.C. (1998) Finite-time transport in aperiodic flows. Physica D 119, 352MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Miller P.D., Jones C.K.R.T., Rogerson A.M., Pratt L.J. (1997) Quantifying transport in numerically generated velocity fields. Physica D 110, 105zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Rogerson A.M., Miller P.D., Pratt L.J., Jones C.K.R.T. (1999) Lagrangian motion and fluid exchange in a barotropic meandering jet. J. Phys. Oceanogr. 29: 2635MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Jones C.K.R.T., Winkler S. (2002) Invariant manifolds and Lagrangian dynamics in the ocean and atmosphere. In: Fiedler B., (eds). Handbook of Dynamical Systems III: Towards Applications, vol 2. North-Holland, Amsterdam, pp. 55–92Google Scholar
  16. 16.
    Haller G. (2001) Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13, 3365–3385MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Shariff K., Pulliam T.H., Ottino J.M. (1991) A dynamical systems analysis of kinematics in the time-periodic wake of a circular cylinder. Lect. Appl. Math. 28, 613–646zbMATHMathSciNetGoogle Scholar
  18. 18.
    Yuster T., Hackborn W.W. (1997) On invariant manifolds attached to oscillating boundaries of Stokes flows. Chaos 7, 769–776zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Haller G. (2004) Exact theory of unsteady separation for two-dimensional flows. J. Fluid Mech. 512, 257–311zbMATHADSCrossRefGoogle Scholar
  20. 20.
    Patera A.T. (1984) A spectral element method for fluid dynamics. J. Comput. Phys. 54, 468–488zbMATHCrossRefADSGoogle Scholar
  21. 21.
    Karniadakis G.E., Sherwin S.J. (1999) Spectral/hp Element Methods for CFD. Numerical Mathematics and ScientificComputation, Clarendon, OxfordGoogle Scholar
  22. 22.
    Duan J., Wiggins S. (1997) Lagrangian transport and chaos in the near wake of the flow around an obstacle: a numerical implementation of lobe dynamics. Nonlin. Proc. Geophys. 4, 125–136ADSCrossRefGoogle Scholar
  23. 23.
    Wang Y., Haller G., Banaszuk A., Tadmor G. (2003) Closed-loop Lagrangian separation control in a bluff body shear flow model. Phys. Fluids 15, 2251–2266MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Bassi F., Rebay S. (2000) A high order discontinuous galerkin method for compressible turbulent flows. In: Cockburn B., Karniadakis G.E., Shu C.-W. (eds). Discontinuous Galerkin Methods: Theory, Computation and Applications Lecture. Notes in Computational Science and Engineering. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. 25.
    Hesthaven J.S. (1999) A stable penalty method for the compressible Navier–Stokes equations. III. Multi-dimensional domain decomposition schemes. SIAM J. Sci. Comp. 20, 62–93zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Proriol J. (1957) Sur une Famille de Polynomes à deux Variables Orthogonaux dans un Triangle. C. R. Acad. Sci. Paris 257, 2459–2461MathSciNetGoogle Scholar
  27. 27.
    Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Theory and Application of Special Functions. Askey, R.A. (ed) Academic, New York 435–495 (1975)Google Scholar
  28. 28.
    Szegö G. (1939) Orthogonal polynomials. Colloquium Publications, vol. 23. American Mathematical Society, ProvidenceGoogle Scholar
  29. 29.
    Hesthaven J.S. (1998) From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35, 655–676zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Hesthaven J.S., Teng C.H. (2000) Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comp. 21, 2352–2380zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Gottlieb D., Hesthaven J.S. (2000) Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131MathSciNetCrossRefGoogle Scholar
  32. 32.
    Carpenter, M.H., Kennedy, C.A.: Fourth order 2 N-storage Runge–Kutta scheme. NASA-TM-109112, NASA Langley Research Center, VA (1994)Google Scholar
  33. 33.
    Xiu D., Karniadakis G.E. (2001) A semi-lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Coppola G., Sherwin S.J., Peiró J. (2001) Non-linear particle tracking for high-order elements. J. Comput. Phys. 172, 356–380zbMATHCrossRefADSGoogle Scholar
  35. 35.
    Drazin P.G., Reid W.H. (1984) Hydrodynamic Stability. Cambridge University Press, CambridgeGoogle Scholar
  36. 36.
    Drazin P.G. (2002) Introduction to Hydrodynamic Stability. Cambridge University Press, CambridgezbMATHGoogle Scholar
  37. 37.
    Criminale W.O., Jackson T.L., Joslin R.D. (2003) Theory and Computation of Hydrodynamic Stability. Cambridge University Press, CambridgezbMATHGoogle Scholar
  38. 38.
    Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8, (1996)Google Scholar
  39. 39.
    Maslen, S.H.: On fully developed channel flows: some solutions and limitations, and effects of compressibility, variable properties, and body forces. NACA TN 4319, September (1958)Google Scholar
  40. 40.
    Raffoul, C.N., Nejad, A.S., Gould, R.D., Boehman, L.: Simultaneous 3D LDV measurements in the near field downstream of a bluff body. In: Twelfth International Symposium on Air Breathing Engines, Melbourne, Australia, vol.2, pp. 1045–1055 (1995)Google Scholar
  41. 41.
    Min C., Choi H. (1999) Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 401, 123zbMATHCrossRefADSGoogle Scholar
  42. 42.
    Park D.S., Ladd D.M., Hendricks E.W. (1994) Feedback control of von Karman vortex shedding behind a circular cylinder at low Reynolds numbers. Phys. Fluids. 6: 2390zbMATHCrossRefADSGoogle Scholar
  43. 43.
    Gunzburger M.D., Lee H.C. (1996) Feedback control of Karman vortex shedding. J. Appl. Mech. 63, 828zbMATHGoogle Scholar
  44. 44.
    Karniadakis G.E., Triantafyllou G.S. (1989) Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441–469zbMATHCrossRefADSGoogle Scholar
  45. 45.
    He J.W., Glowinski R., Metcalfe R., Nordlander A., Periaux J. (2000) Active control and drag optimization for flow past a circular cylinder. J. Comput. Phys. 163, 83zbMATHMathSciNetCrossRefADSGoogle Scholar
  46. 46.
    Homescu C., Navon I.M., Li Z. (2002) Suppression of vortex shedding for flow around a circular cylinder using optimal control. Int. J. Numer. Methods. Fluids 38, 43zbMATHCrossRefADSGoogle Scholar
  47. 47.
    Blackburn H.M., Henderson R.D. (1999) A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255zbMATHMathSciNetCrossRefADSGoogle Scholar
  48. 48.
    Haller G. (2001) Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D 149, 248–277zbMATHMathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Hirsch C. (1990) Numerical Computation of Internal and External Flows: Volume 1 – Fundamentals of Numerical Discretisation. Wiley, New YorkGoogle Scholar
  50. 50.
    Voth G.A., Haller G., Gollub J. (2002) Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett. 88, 254501CrossRefADSGoogle Scholar
  51. 51.
    van Dyke, M.: Album of Fluid Motion. Parabolic Press, (1982)Google Scholar
  52. 52.
    Perry A.E., Chong M.S., Lim T.T. (1982) The vortex shedding process behind two-dimensional bluff bodies. J. Fluid Mech. 116, 77–90CrossRefADSGoogle Scholar
  53. 53.
    Williamson C.H.K. (1996) Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Hayder Salman
    • 1
    • 2
    • 4
    Email author
  • Jan S. Hesthaven
    • 1
  • Tim Warburton
    • 3
  • George Haller
    • 4
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of Mathematics, CB #3250, Phillips HallUNC-Chapel HillChapel HillUSA
  3. 3.Department of Computational and Applied MathematicsRice UniversityHoustonUSA
  4. 4.Department of Mechanical EngineeringMITCambridgeUSA

Personalised recommendations