Theoretical and Computational Fluid Dynamics

, Volume 20, Issue 5–6, pp 525–551 | Cite as

Systematic multiscale models for deep convection on mesoscales

  • Rupert KleinEmail author
  • Andrew J. Majda
Original Article


This paper builds on recent developments of a unified asymptotic approach to meteorological modeling [ZAMM, 80: 765–777, 2000, SIAM Proc. App. Math. 116, 227–289, 2004], which was used successfully in the development of Systematic multiscale models for the tropics in Majda and Klein [J. Atmosph. Sci. 60: 393–408, 2003] and Majda and Biello [PNAS, 101: 4736–4741, 2004]. Biello and Majda [J. Atmosph. Sci. 62: 1694–1720, 2005]. Here we account for typical bulk microphysics parameterizations of moist processes within this framework. The key steps are careful nondimensionalization of the bulk microphysics equations and the choice of appropriate distinguished limits for the various nondimensional small parameters that appear. We are then in a position to study scale interactions in the atmosphere involving moist physics. We demonstrate this by developing two systematic multiscale models that are motivated by our interest in mesoscale organized convection. The emphasis here is on multiple length scales but common time scales. The first of these models describes the short-time evolution of slender, deep convective hot towers with horizontal scale ~ 1  km interacting with the linearized momentum balance on length and time scales of (10 km/3 min). We expect this model to describe how convective inhibition may be overcome near the surface, how the onset of deep convection triggers convective-scale gravity waves, and that it will also yield new insight into how such local convective events may conspire to create larger-scale strong storms. The second model addresses the next larger range of length and time scales (10 km, 100 km, and 20 min) and exhibits mathematical features that are strongly reminiscent of mesoscale organized convection. In both cases, the asymptotic analysis reveals how the stiffness of condensation/evaporation processes induces highly nonlinear dynamics. Besides providing new theoretical insights, the derived models may also serve as a theoretical devices for analyzing and interpreting the results of complex moist process model simulations, and they may stimulate the development of new, theoretically grounded sub-grid-scale parameterizations.


Moist processes Multiple-scale asymptotics 


92.60.Jq 92.60.Nv 92.60.Dj 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bannon P.R. (1995): Potential vorticity conservation, hydrostatic adjustment, and the anelastic approximation. J. Atmos. Sci.52, 2302–2312MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Biello J.A., Majda A.J. (2005): A new multiscale model for the Madden Julian oscillation. J. Atmosph. Sci. 62, 1694–1720MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Botta N., Klein R., Almgren A. (1999): Asymptotic analysis of a dry atmosphere, ENUMATH Jyväskylä, FinlandGoogle Scholar
  4. 4.
    Botta, N., Klein, R., Almgren, A.: Dry Atmosphere Asymptotics, PIK Report 55, Potsdam Institut für Klimafolgenforschung (1999)Google Scholar
  5. 5.
    Clark T.L. (1977): A small-scale dynamic model using a terrain following coordinate transformation. J. Comp. Phys. 24, 186–215zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Emanuel, K. A.: Atmospheric Convection, Oxford University Press (1994)Google Scholar
  7. 7.
    Ghan S., Randall D., Xu K., Cederwall R., Cripe D., Hack J., Iacobellis S., Klein S., Krueger S., Lohmann U., Pedretti J., Robock A., Rotstayn L., Somerville R., Stenchikov G., Sud Y., Walker G., Xie S., Yio J., Zhang M. (2000): A comparison of single column model simulations of summertime midlatitude continental convection. J. Geophys. Res. 105, 2091–2124CrossRefADSGoogle Scholar
  8. 8.
    Grabowski W.W. (1998): Toward cloud resolving modeling of large-scale tropical circulations: a simple cloud Microphysics parameterization. J. Atmosph. Sci. 55, 3283–3298CrossRefADSGoogle Scholar
  9. 9.
    Grabowski W.W., Smolarkiewicz P.K. (1990): Monotone finite-difference approximations to the advection-condensation problem. Mon. Wea. Rev. 118, 2082–2097CrossRefGoogle Scholar
  10. 10.
    Grabowski W.W., Smolarkiewicz P.K. (1996): On two-time semi-Lagrangian modelling of precipitating clouds. Mon. Wea. Rev. 124, 487–497CrossRefGoogle Scholar
  11. 11.
    Grabowski W.W. (2002): Large-scale organization of moist convection in idealized aquaplanet simulations. Int. J. Num. Meth. Fluids 39, 843–853zbMATHCrossRefGoogle Scholar
  12. 12.
    Kessler E.(1969): On the distribution and continuity of water substance in atmospheric circulations. Meteor. Monographs 32, 84Google Scholar
  13. 13.
    Klein R. (2000): Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. ZAMM, 80, 765–777zbMATHCrossRefGoogle Scholar
  14. 14.
    Klein R. (2004): An applied mathematical view of theoretical meteorology, invited presentation at ICIAM 2003, Sydney, Australia. SIAM Proc. Appl. Math.116, 227–289Google Scholar
  15. 15.
    Klein R. (2004): Multiple Scales Asymptotics for Atmospheric Flows, 4th European Conference on Mathematics, Stockholm, SwedenGoogle Scholar
  16. 16.
    Lipps F.B., Hemler R.S. (1982): A scale analysis of deep moist convection and some related numerical simulations. J. Atmos. Sci.39, 2192–2210CrossRefADSGoogle Scholar
  17. 17.
    Majda A.J., Klein R. (2003): Systematic multi-scale models for the tropics. J. Atmosph. Sci. 60, 393–408CrossRefADSGoogle Scholar
  18. 18.
    Majda A.J., Biello J.A. (2004): A multiscale model for tropical intraseasonal oscillations. PNAS 101, 4736–4741zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Moncrieff M.W.(1981): A theory of organized steady convection and its transport properties. Q. J. R. Meteor. Soc. 107, 29–50CrossRefADSGoogle Scholar
  20. 20.
    Moncrieff M.W. (1992): Organized convective systems: archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. R. Meteor. Soc. 118, 819–850CrossRefADSGoogle Scholar
  21. 21.
    Pandya E.R., Durran D.R. (1996): The influence of convectively generated thermal forcing on mesoscale circulation around squall lines. J. Atmosph. Sci. 53, 2924–2951CrossRefADSGoogle Scholar
  22. 22.
    Parkins C.J, Blythe P.A., Crighton D.G. (2000): Hot spot ignition: the Newtonian limit. Proc. R. Soc. Phys. Eng. Sci. 456, 2857–2882zbMATHMathSciNetADSGoogle Scholar
  23. 23.
    Pedlosky J. (1987): Geophysical Fluid Dynamics. 2nd edn. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  24. 24.
    Peters N. (2000): Turbulent Combustion. Cambridge University Press, CambridgezbMATHGoogle Scholar
  25. 25.
    Wacker, U.: private communication with Dr. Ulrike Wacker, Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, Germany (2005)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.FB Mathematik and InformatikFreie Universität Berlin and Potsdam Institute for Climate Impact ResearchBerlinGermany
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations