Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 21, Issue 1, pp 59–76 | Cite as

Ligament formation in sheared liquid–gas layers

  • Thomas Boeck
  • Jie Li
  • Enrique López-Pagés
  • Philip Yecko
  • Stéphane Zaleski
Original Article

Abstract

We perform numerical simulations of two-phase liquid–gas sheared layers, with the objective of studying atomization. The Navier–Stokes equations for two-dimensional incompressible flow are solved in a periodic domain. A volume-of-fluid method is used to track the interface. The density ratio is kept around 10. The calculations show good agreement with a fully viscous Orr–Sommerfeld linear theory over several orders of magnitude of interface growth. The nonlinear development shows the growth of finger-like structures, or ligaments, and the detachment of droplets. The effect of the Weber and Reynolds numbers, the boundary layer width and the initial perturbation amplitude are discussed through a number of typical cases. Inversion of the liquid boundary layer is shown to yield more readily ligaments bending upwards and is thus more likely to produce droplets.

Keywords

Kelvin-Helmholtz instability Two-fluid mixing layer Atomization Multiphase shear flow Ligaments Droplet formation Ligament breakup Volume of fluid 

PACS

47.55.Ca 47.55.db 47.55.df 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aulisa E., Manservisi S., Scardovelli R., Zaleski S. (2003): A geometrical area-preserving volume of fluid method. J. Comput. Phys. 192, 355–364zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Bianchi, G.M., Pelloni, P., Toninel, S., Scardovelli, R., Leboissetier, A., Zaleski, S.: A quasi-direct 3D simulation of the atomization of high-speed liquid jets. In: Proceedings of ICES05, 2005 ASME ICE Division Spring Technical Conference. Chicago, Illinois, April 5–7, 2005Google Scholar
  3. 3.
    Boeck T., Zaleski S. (2005): Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17, 032106MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Brenner M., Gueyffier D. (1999): On the bursting of viscous films. Phys. Fluids 11, 737–739CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Brown G.L., Roshko A. (1974): On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816CrossRefADSGoogle Scholar
  6. 6.
    Chandrasekhar S. (1961): Hydrodynamic and Hydromagnetic Stability. Oxford University Press, OxfordzbMATHGoogle Scholar
  7. 7.
    Culick F.E.C. (1960): Comments on a ruptured soap film. J. Appl. Phys. 31, 1128–1129CrossRefADSGoogle Scholar
  8. 8.
    Faeth, G., Hsiang, L.-P., Wu, P.-K.: Structure and breakup properties of sprays. Int. J. Multiphase Flow 21, 99–127, supplement issue (1995)Google Scholar
  9. 9.
    Fullana J.M., Zaleski S. (1999): Stability of a growing end-rim in a liquid sheet of uniform thickness. Phys. Fluids 11, 952–954CrossRefADSzbMATHGoogle Scholar
  10. 10.
    Gordillo J.M., Perez-Saborid M. (2005): On the first wind atomization regime. J. Fluid. Mech. 541, 1–20zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Gueyffier D., Nadim A., Li J., Scardovelli R., Zaleski S. (1999): Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152, 423–456zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Hinch E. (1984): A note on the mechanism of the instability at the interface between two shearing fluids. J. Fluid Mech. 144, 463–465CrossRefADSGoogle Scholar
  13. 13.
    Hooper A.P. (1985): Long-wave instability at the interface between two viscous fluids: thin layer effects. Phys. Fluids 28(6): 1613–1618zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Hooper A.P., Boyd W.G.C. (1983): Shear-flow instability at the interface between two viscous fluids. J. Fluid Mech. 128, 507–528zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Hooper A.P., Boyd W.G.C. (1987): Shear-flow instability due to a wall and a viscosity discontinuity at the interface. J. Fluid Mech. 179, 201–226zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Hoyt J.W., Taylor J. (1977): Waves on water jets. J. Fluid Mech. 83, 119–127CrossRefADSGoogle Scholar
  17. 17.
    Keller, F.X., Li, J., Vallet, A., Vandromme, D., Zaleski, S.: Direct numerical simulation of interface breakup and atomization. In: Yule, A.J. (ed.) Proceedings of ICLASS94, pp. 56–62. Begell House, New York (1994)Google Scholar
  18. 18.
    Lafaurie B., Nardone C., Scardovelli R., Zaleski S., Zanetti G. (1994): Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys.113, 134–147zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Lasheras J.C., Hopfinger E.J. (2000): Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32, 275–308zbMATHCrossRefADSGoogle Scholar
  20. 20.
    Leboissetier A., Zaleski S. (2002): Influence des conditions amont turbulentes sur l’atomisation primaire. Combustion (Revue des Sciences et Techniques de Combustion) 2, 75–87Google Scholar
  21. 21.
    Lefebvre A.H. (1989): Atomization and Sprays. Taylor & Francis, LondonGoogle Scholar
  22. 22.
    Li J. (1995): Calcul d’interface affine par morceaux (piecewise linear interface calculation). C. R. Acad. Sci. Paris, série IIb, (Paris) 320, 391–396zbMATHGoogle Scholar
  23. 23.
    Marmottant P., Villermaux E. (2002): Atomisation primaire dans les jets coaxiaux. Combustion (Revue des Sciences et Techniques de Combustion) 2, 89–126Google Scholar
  24. 24.
    Rangel R., Sirignano W. (1988): Nonlinear growth of Kelvin–Helmholtz instability: effect of surface tension and density ratio. Phys. Fluids 31: 1845–1855CrossRefADSGoogle Scholar
  25. 25.
    Raynal, L.: Thèse. PhD thesis, Universite Joseph Fourier, Grenoble (1997)Google Scholar
  26. 26.
    Reitz D., Bracco F. (1982): Mechanism of atomisation of a liquid jet. Phys. Fluids 25, 1730–1742zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Scardovelli R., Zaleski S. (1999): Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567–603MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Scardovelli R., Zaleski S. (2003): Interface reconstruction with least-square fit and split Lagrangian-Eulerian advection. Int. J. Numer. Meth. Fluids 41, 251–274zbMATHCrossRefGoogle Scholar
  29. 29.
    Tauber W., Tryggvason G. (2000): Direct numerical simulation of primary breakup. Comput. Fluid Dyn. J. 9: 158Google Scholar
  30. 30.
    Tauber W., Unverdi S.O., Tryggvason G. (2002): The non-linear behavior of a sheared immiscible fluid interface. Phys. Fluids 14: 2871MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Taylor G.I. (1959): The dynamics of thin sheets of fluid III. Disintegration of fluid sheets. Proc. Roy. Soc. Lond. A 253: 313–321zbMATHADSCrossRefGoogle Scholar
  32. 32.
    Villermaux E. (1998): On the role of viscosity in shear instabilities. Phys. Fluids 10, 368–373MathSciNetCrossRefADSzbMATHGoogle Scholar
  33. 33.
    Yecko P., Zaleski S., Fullana J.-M. (2002): Viscous modes in two-phase mixing layers. Phys.Fluids 14, 4115–4122MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Zaleski, S., Li, J., Scardovelli, R., Zanetti, G.: Flows with interfaces: dealing with surface tension and reconnection. In: Proceedings of the IMACS-COST Conference on Computational Fluid Dynamics, Lausanne Sept. 13–15, 1995. Notes on Numerical Fluid Mechanics, p. 53. Vieweg, Braunschweig (1995)Google Scholar
  35. 35.
    Zaleski, S., Li, J., Scardovelli, R., Zanetti, G.: Direct simulation of multiphase flows with density variations. In: IUTAM colloquium “Variable Density Low Speed Turbulent Flows”. Kluwer, Dordrecht (1996)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thomas Boeck
    • 1
  • Jie Li
    • 2
  • Enrique López-Pagés
    • 3
  • Philip Yecko
    • 4
  • Stéphane Zaleski
    • 5
  1. 1.Fachgebiet Thermo- und FluiddynamikTU IlmenauIlmenauGermany
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK
  3. 3.Fluid Mechanics DepartmentUniversidad de ZaragozaZaragozaSpain
  4. 4.Department of Mathematical SciencesMontclair State UniversityMontclairUSA
  5. 5.Laboratoire de Modélisation en MécaniqueCNRS and Université Pierre et Marie Curie (Paris VI)ParisFrance

Personalised recommendations