Advertisement

Implicit stress integration procedure for large strains of the reformulated Shape Memory Alloys material model

  • Vladimir DunićEmail author
  • Radovan Slavković
Original Article
  • 18 Downloads

Abstract

Devices made of Shape-Memory Alloys (SMA) often exhibit a superelasticity or a shape memory effect during the exploitation. Both effects include large deformations up to 10% or large rotations, and a large-strain stress integration procedure is necessary for a correct numerical simulation. For this purpose, a reformulation of the existing SMA phenomenological constitutive model is introduced to provide an effective implementation into the Finite Element Method code. All variables are derived in a scalar form, which allows an extension of the small-strain solution to the large-strain problems. The multiplicative decomposition of the deformation gradient is employed to compute the proper strain measure as an input variable for the unified stress integration procedure. An appropriate conjugated stress measure is computed, and the variables necessary for further computation are updated. The verification is presented in several selected examples.

Keywords

Shape-Memory Alloys Reformulated material model Stress integration procedure Small strain Large strain Effective formulation 

Notes

Acknowledgements

The work presented in this paper is supported by the Ministry of Education, Science and Technological development, Republic of Serbia, Projects TR32036 and III41007.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cisse, C., Zaki, W., Zineb, T.B.: A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 76, 244–284 (2016)CrossRefGoogle Scholar
  2. 2.
    Tanaka, K., Nagaki, S.: A thermomechanical description of materials with internal variables in the process of phase transitions. Ingenieur-Archiv 51, 287–299 (1982)zbMATHCrossRefGoogle Scholar
  3. 3.
    Tanaka, K.: A thermomechanical sketch of shape memory effect: onedimensional tensile behavior. Res Mechanica 18, 251–263 (1986)Google Scholar
  4. 4.
    Liang, C., Rogers, C.: A multi-dimensional constitutive model for shape memory alloys. J. Eng. Math. 26(3), 429–443 (1992)zbMATHCrossRefGoogle Scholar
  5. 5.
    Raniecki, B., Lexcellent, C.: RL-models of pseudoelasticity and their specification for some shape memory solids. Eur. J. Mech. A. Solids 13(1), 21–50 (1994)zbMATHGoogle Scholar
  6. 6.
    Leclercq, S., Lexcellent, C.: A general macroscopic description of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 44(6), 953–980 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Boyd, J., Lagoudas, D.: A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12(6), 805–842 (1996)zbMATHCrossRefGoogle Scholar
  8. 8.
    Raniecki, B., Lexcellent, C.: Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur. J. Mech. A Solids 17(2), 185–205 (1998)zbMATHCrossRefGoogle Scholar
  9. 9.
    Souza, A., Mamiya, E., Zouain, N.: Three-dimensional model for solids undergoing stress-induced phase transformations. Eur. J. Mech. A Solids 17(5), 789–806 (1998)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Qidwai, M., Lagoudas, D.: Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int. J. Numer. Methods Eng. 47(6), 1123–1168 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    Qidwai, M., Lagoudas, D.: On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. Int. J. Plast. 16(10–11), 1309–1343 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Auricchio, F.: A robust integration-algorithm for a finite-strain shape memory alloy superelastic model. Int. J. Plast. 17(7), 971–990 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Auricchio, F., Petrini, L.: Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int. J. Numer. Methods Eng. 55(11), 1255–1284 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Auricchio, F., Petrini, L.: A three-dimensional model describing stress–temperature induced solid phase transformations: solution algorithm and boundary value problems. Int. J. Numer. Methods Eng. 61(6), 807–836 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Helm, D., Haupt, P.: Shape memory behaviour: modelling within continuum thermomechanics. Int. J. Solids Struct. 40(4), 827–849 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Popov, P., Lagoudas, D.: A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int. J. Plast. 23(10–11), 1679–1720 (2007). In honor of Professor Dusan KrajcinoviczbMATHCrossRefGoogle Scholar
  17. 17.
    Zaki, W., Moumni, Z.: A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55(11), 2455–2490 (2007)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Panico, M., Brinson, L.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55(11), 2491–2511 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Reese, S., Christ, D.: Finite deformation pseudo-elasticity of shape memory alloys—constitutive modelling and finite element implementation. Int. J. Plast. 24(3), 455–482 (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Christ, D., Reese, S.: A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int. J. Solids Struct. 46(20), 3694–3709 (2009)zbMATHCrossRefGoogle Scholar
  21. 21.
    Thamburaja, P.: A finite-deformation-based phenomenological theory for shape-memory alloys. Int. J. Plast. 26(8), 1195–1219 (2010). Special Issue In Honor of Lallit AnandzbMATHCrossRefGoogle Scholar
  22. 22.
    Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., Sohrabpour, S.: A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plast. 26(7), 976–991 (2010)zbMATHCrossRefGoogle Scholar
  23. 23.
    Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., Sohrabpour, S.: A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation. Contin. Mech. Thermodyn. 22(5), 345–362 (2010) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Ziólkowski, A.: Three-dimensional phenomenological thermodynamic model of pseudoelasticity of shape memory alloys at finite strains. Contin. Mech. Thermodyn. 19, 379–398 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Teeriaho, J.-P.: An extension of a shape memory alloy model for large deformations based on an exactly integrable eulerian rate formulation with changing elastic properties. Int. J. Plast. 43, 153–176 (2013)CrossRefGoogle Scholar
  26. 26.
    Stupkiewicz, S., Petryk, H.: A robust model of pseudoelasticity in shape memory alloys. Int. J. Numer. Methods Eng. 93(7), 747–769 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Xu, L., Baxevanis, T., Lagoudas, D.: A finite strain constitutive model for martensitic transformation in shape memory alloys based on logarithmic strain. In: 25th AIAA/AHS Adaptive Structures Conference (January 2017)Google Scholar
  28. 28.
    Xu, L., Baxevanis, T., Lagoudas, D.: A three-dimensional constitutive model for polycrystalline shape memory alloys under large strains combined with large rotations. In: Proceedings of the ASME 2018—Conference on Smart Materials, Adaptive Structures and Intelligent Systems—SMASIS2018 (September 2018)Google Scholar
  29. 29.
    Panoskaltsis, V.P., Polymenakos, L.C., Soldatos, D.: On infinitesimal and finite deformations in shape memory alloys. Acta Mech. 229, 2041–2061 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kojić, M., Bathe, K.-J.: Inelastic Analysis of Solids and Structures. Computational Fluid and Solid Mechanics, 1st edn. Springer, Berlin (2005)Google Scholar
  31. 31.
    Kojic, M., Vlastelica, I., Zivkovic, M.: Implicit stress integration procedure for small and large strains of the gurson material model. Int. J. Numer. Methods Eng. 53(12), 2701–2720 (2002)zbMATHCrossRefGoogle Scholar
  32. 32.
    Lagoudas, D., Hartl, D., Chemisky, Y., Machado, L., Popov, P.: Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int. J. Plast. 32–33, 155–183 (2012)CrossRefGoogle Scholar
  33. 33.
    Simó, J., Hughes, T.: Computational Inelasticity. Interdisciplinary Applied Mathematics: Mechanics and Materials. Springer, New York (1998)Google Scholar
  34. 34.
    Henann, D., Anand, L.: A large deformation theory for rate-dependent elastic–plastic materials with combined isotropic and kinematic hardening. Int. J. Plast. 25(10), 1833–1878 (2009)CrossRefGoogle Scholar
  35. 35.
    Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79(2), 173–202 (1990)ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Eterovic, A.L., Bathe, K.-J.: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic–kinematic hardening using the logarithmic stress and strain measures. Int. J. Numer. Methods Eng. 30(6), 1099–1114 (1990)zbMATHCrossRefGoogle Scholar
  37. 37.
    Caminero, M., Montáns, F., Bathe, K.-J.: Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comput. Struct. 89(11–12), 826–843 (2011)CrossRefGoogle Scholar
  38. 38.
    Dunić, V., Slavkovic, R., Pieczyska, E.A.: Properties and Behavior of Shape Memory Alloys in the Scope of Biomedical and Engineering Applications. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds.) Biomaterials in Clinical Practice, pp. 303–331. Springer, Cham (2018) CrossRefGoogle Scholar
  39. 39.
    Lagoudas, D.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2010)Google Scholar
  40. 40.
    Hartl, D., Chatzigeorgiou, G., Lagoudas, D.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plast. 26(10), 1485–1507 (2010)zbMATHCrossRefGoogle Scholar
  41. 41.
    Cuitiño, A., Ortiz, M.: A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasiticity with multiplicative kinematics. Eng. Comput. 9(4), 437–451 (1992)CrossRefGoogle Scholar
  42. 42.
    Lagoudas, D., Bo, Z., Qidwai, M.: A thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mech. Compos. Mater. Struct. 3(2), 153–179 (1996)CrossRefGoogle Scholar
  43. 43.
    Lagoudas, D., Bo, Z., Qidwai, M., Entchev, P.: SMA–UM: User Material Subroutine for Thermomechanical Constitutive Model of Shape Memory Alloys. Technical report, Texas A&M University, College Station, TX (2003)Google Scholar
  44. 44.
    Dunić, V.: Development and implementation of thermo-mechanical constitutive model for numerical analysis of shape memory alloys. Phd thesis, Faculty of Engineering, University of Kragujevac, Serbia (May 2015)Google Scholar
  45. 45.
    Kojić, M., Slavković, R., Živković, M., Grujović, N.: PAK-S: Program for FE Structural Analysis. Faculty of Mechanical Engineering, University of Kragujevac, Kragujevac (1999)Google Scholar
  46. 46.
    Xiao, H., Bruhns, O., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)zbMATHCrossRefGoogle Scholar
  47. 47.
    Bathe, K.-J.: Finite Element Procedures. K.-J. Bathe, Cambridge (2006)zbMATHGoogle Scholar
  48. 48.
    Simo, J., Ortiz, M.: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Eng. 49, 221–245 (1985)ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Holzapfel, G.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)zbMATHGoogle Scholar
  50. 50.
    Mićunović, M.: Primenjena Mehanika Kontinuuma. Naučna knjiga, Beograd (1990)Google Scholar
  51. 51.
    Živković, M.: Nelinearna Analiza Konstrukcija. Univerzitet u Kragujevcu, Mašinski fakultet (2006)Google Scholar
  52. 52.
    Simo, J.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput. Methods Appl. Mech. Eng. 66(2), 199–219 (1988)ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Šittner, P., Hara, Y., Tokuda, M.: Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces. Metall. Mater. Trans. A 26(11), 2923–2935 (1995)CrossRefGoogle Scholar
  54. 54.
    Weber, G., Lush, A., Zavaliangos, A., Anand, L.: An objective time-integration procedure for isotropic rate-independent and rate-dependent elastic–plastic constitutive equations. Int. J. Plast. 6(6), 701–744 (1990)zbMATHCrossRefGoogle Scholar
  55. 55.
    Baykara, C., Guven, U., Bayer, I.: Large deflections of a cantilever beam of nonlinear bimodulus material subjected to an end moment. J. Reinf. Plast. Compos. 24(12), 1321–1326 (2005)CrossRefGoogle Scholar
  56. 56.
    Dunić, V., Busarac, N., Slavković, V., Rosić, B., Niekamp, R., Matthies, H., Slavković, R., Živković, M.: A thermo-mechanically coupled finite strain model considering inelastic heat generation. Contin. Mech. Thermodyn. 28, 993–1007 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Sanz, M.A., Montáns, F.J., Latorre, M.: Computational anisotropic hardening multiplicative elastoplasticity based on the corrector elastic logarithmic strain rate. Comput. Methods Appl. Mech. Eng. 320, 82–121 (2017)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Latorre, M., Montáns, F.J.: A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate. Appl. Math. Model 55, 716–740 (2018)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Zhang, M., Montáns, F.J.: A simple formulation for large-strain cyclic hyperelasto-plasticity using elastic correctors. Theory and algorithmic implementation. Int. J. Plast. 113, 185–217 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Kragujevac, Faculty of EngineeringKragujevacSerbia

Personalised recommendations