Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 6, pp 1941–1960 | Cite as

Numerically driven tuning of equilibrium paths for pantographic beams

  • Emilio TurcoEmail author
Original Article
  • 27 Downloads

Abstract

The nonlinear mechanical behavior of pantographic beams, mimicking the results of the Euler’s beam, is explored. In particular, using a very simple Lagrangian model already tested for pantographic lattices and an algorithm based on the Riks’ approach to reconstruct via a stepwise procedure the equilibrium path, the results of several numerical simulations, capable of determining the buckling load, the pre- and post-buckling paths and the imperfection analysis, are presented and discussed. The goal of this campaign of numerical simulations is double. Indeed, besides to make available to the scientific community some reference solutions for a kind of very popular metamaterial, the enriched capabilities of pantographic beams can also be exploited also for a fine-tuning of equilibrium paths.

Keywords

Pantographic beams Large displacements in elastic regime Tunable materials 

Notes

References

  1. 1.
    Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability, 2nd edn. McGraw-Hill, Auckland (1963)Google Scholar
  2. 2.
    Pignataro, M., Rizzi, N., Luongo, A.: Stability. Bifurcation and Postcritical Behaviour of Elastic Structures. Elsevier, Amsterdam (1991)Google Scholar
  3. 3.
    Antman, S.S.: Nonlinear Problems of Elasticity, volume 107 of Applied Mathematical Sciences. Springer, New York, 2nd edn (2005)Google Scholar
  4. 4.
    Bažant, Z.P., Cedolin, L.: Stability of Structures. Elastic, lnelastic, Fracture and Damage Theories. World Scientific Publishing, New Jersey (2010)zbMATHGoogle Scholar
  5. 5.
    Bertoldi, K., Vitelli, V., Christensen, J., van Hecke, M.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2(17066) (2017)Google Scholar
  6. 6.
    dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., Eugster, S.R., Pfaff, A., Hoschke, K., Langkemper, R., Turco, E., Sarikaya, R., Misra, A., De Angelo, M., D’Annibale, F., Bouterf, A., Pinelli, X., Misra, A., Desmorat, B., Pawlikowski, M., Dupuy, C., Scerrato, D., Peyre, P., Laudato, M., Manzari, L., Göransson, P., Hesch, C., Hesch, S., Franciosi, P., Dirrenberger, J., Maurin, F., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., Farsari, M., Muller, W., Emek Abali, B., Liebold, C., Ganzosch, G., Harrison, P., Drobnicki, R., Igumnov, L., Alzahrani, F., Hayat, T.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. (2019).  https://doi.org/10.1007/s00161-019-00806-x Google Scholar
  7. 7.
    dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D.J., Giorgio, I., Andreaus, U., Turco, E., Gołaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo, M., Cazzani, A., Della Corte, A., Battista, A., Scerrato, D., Zurba Eremeeva, I., Rahali, Y., Ganghoffer, J.-F., Muller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Neggers, J., Hild, F.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31(4), 851–884 (2019)ADSMathSciNetGoogle Scholar
  8. 8.
    Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2019)MathSciNetGoogle Scholar
  9. 9.
    Golaszewski, R., Grygoruk, M., Giorgio, I., Laudato, M., di Cosmo, F.: Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions. Continuum Mech. Thermodyn. 31(4), 1015–1034 (2019)ADSGoogle Scholar
  10. 10.
    Turco, E., Barchiesi, E.: Equilibrium paths of Hencky pantographic beams in three-point bending problem. Math. Mech. Complex Syst. (submitted):1–20 (2019)Google Scholar
  11. 11.
    Eremeyev, V.A., Turco, E.: Enriched buckling for beam-lattice metamaterials. Mech. Res. Commun. (submitted):1–7 (2019)Google Scholar
  12. 12.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2185), 1–23 (2016)Google Scholar
  13. 13.
    Filipov, E.T., Tachi, T., Paulino, G.H.: Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. PNAS; Proc. Natl. Acad. Sci. 112(40), 12321–12326 (2015)ADSGoogle Scholar
  14. 14.
    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für Angewandte Mathematik und Physik 67(85), 1–28 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94–109 (2018)Google Scholar
  17. 17.
    Riks, E.: The application of Newton’s method to the problem of elastic stability. Journal of Applied Mechanics, Transactions ASME 39 Ser E(4), 1060–1065 (1972)ADSzbMATHGoogle Scholar
  18. 18.
    Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  19. 19.
    Clarke, M.J., Hancock, G.J.: A study of incremental-iterative strategies for non-linear analyses. Int. J. Numer. Meth. Eng. 29, 1365–1391 (1990)Google Scholar
  20. 20.
    Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series,Vol. 319(1), p. 012018. IOP Publishing (2011)Google Scholar
  21. 21.
    Misra, A., Lekszycki, T., Giorgio, I., Ganzoch, G., Müller, W.H., dell’Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)Google Scholar
  22. 22.
    De Angelo, M., Barchiesi, E., Giorgio, I., Emek Abali, B.: Numerical identification of constitutive parameters in reduced order bi-dimensional models for pantographic structures: application to out-of-plane buckling. Arch. Appl. Mech. 89(7), 1333–1358 (2019)Google Scholar
  23. 23.
    Eugster, S.R., dell’Isola, F.: Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97(4), 477–506 (2017)Google Scholar
  24. 24.
    Eugster, S.R., dell’Isola, F.: Exegesis of Sect. II and III. A from ”Fundamentals of the Mechanics of Continua ” by E. Hellinger. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98(1), 31–68 (2018)Google Scholar
  25. 25.
    Eugster, S.R., dell’Isola, F.: Exegesis of Sect. III. B from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98(1), 69–105 (2018)Google Scholar
  26. 26.
    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets. Asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Giorgio, I., dell’Isola, F., Steigmann, D.J.: Axisymmetric deformations of a 2nd grade elastic cylinder. Mech. Res. Commun. 94, 45–48 (2018)Google Scholar
  28. 28.
    Giorgio, I., dell’Isola, F., Steigmann, D.J.: Edge effects in Hypar nets. Comptes Rendus Mécanique 347, 114–123 (2019)ADSGoogle Scholar
  29. 29.
    Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Continuum Mech. Thermodyn. 31, 33–45 (2019)ADSMathSciNetGoogle Scholar
  30. 30.
    Placidi, L., dell’Isola, F., Barchiesi, E.: Mechanics of Fibrous Materials and Applications, chapter Heuristic homogenization of Euler and pantographic beams, pp. 123–155. Springer, Cham (2020)Google Scholar
  31. 31.
    Barchiesi, E., Eugster, S.R., Placidi, L., dell’Isola, F.: Pantographic beam: a complete second gradient 1D-continuum in plane. Zeitschrift für angewandte Mathematik und Physik 70(135) (2019)Google Scholar
  32. 32.
    Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 6(3), 213–250 (2018)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Abdoul-Anziz, H., Seppecher, P., Bellis, C.: Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms. Math. Mech. Solids (2019).  https://doi.org/10.1177/1081286519855431 MathSciNetGoogle Scholar
  34. 34.
    Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Continuum Mech Thermodyn 1–21 (2018)Google Scholar
  35. 35.
    Turco, E.: Discrete is it enough? The revival of Piola–Hencky keynotes to analyze three-dimensional Elastica. Continuum Mech. Thermodyn. 30(5), 1039–1057 (2018)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local B formulation for isogeometric Kirchhoff–Love shells. Comput. Method Appl. Mech. Eng. 332, 462–487 (2018)ADSMathSciNetGoogle Scholar
  37. 37.
    Greco, L., Cuomo, M., Contrafatto, L.: A quadrilateral G1-conforming finite element for the Kirchhoff plate model. Comput. Method Appl. Mech. Eng. 346, 913–951 (2019)ADSGoogle Scholar
  38. 38.
    Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Method Appl. Mech. Eng. 356, 354–386 (2019)ADSGoogle Scholar
  39. 39.
    Ogden, R.W.: Non-linear Elastic Deformations. Dover, Mineola (1997)Google Scholar
  40. 40.
    Fu, Y.B., Ogden, R.W.: Nonlinear stability analysis of pre-stressed elastic bodies. Continuum Mech. Thermodyn. 11, 141–172 (1999)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Eremeyev, V.A., Zubov, L.M.: On the stability of elastic bodies with couple stresses. Mech. Solids 29(3), 172–181 (1994)Google Scholar
  42. 42.
    Sheydakov, D.N., Altenbach, H.: Stability of inhomogeneous micropolar cylindrical tube subject to combined loads. Math. Mech. Solids 21(9), 1082–1094 (2016)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Lakes, R.S.: Stability of Cosserat solids: size effects, ellipticity and waves. J. Mech. Mater. Struct. 13(1), 83–91 (2018)MathSciNetGoogle Scholar
  44. 44.
    Solyaev, Y., Lurie, S., Barchiesi, E., Placidi, L.: On the dependence of standard and gradient elastic material constants on a field of defects. Math. Mech. Solids (2019).  https://doi.org/10.1177/1081286519861827 Google Scholar
  45. 45.
    Balobanov, V., Niiranen, J.: Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput. Methods Appl. Mech. Eng. 339, 137–159 (2018)ADSMathSciNetGoogle Scholar
  46. 46.
    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9(5), 241–257 (1997)ADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Niiranen, J., Balobanov, V., Kiendl, J., Hosseini, S.B.: Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models. Math. Mech. Solids 24(1), 312–335 (2019)MathSciNetGoogle Scholar
  50. 50.
    Giorgio, I., Del Vescovo, D.: Energy-based trajectory tracking and vibration control for multi-link highly flexible manipulators. Math. Mech. Complex Syst. 7(2), 159–174 (2019)MathSciNetGoogle Scholar
  51. 51.
    Giorgio, I., Del Vescovo, D.: Non-linear lumped-parameter modeling of planar multi-link manipulators with highly flexible arms. Robotics 7(4), 60 (2018) Google Scholar
  52. 52.
    Giorgio, I., Della Corte, A., dell’Isola, F.: Dynamics of 1D nonlinear pantographic continua. Nonlinear Dyn. 88(1), 21–31 (2017)Google Scholar
  53. 53.
    Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mech. Thermodyn. 31(1), 147–188 (2019)ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Architecture, Design and Urban planning (DADU)University of SassariAlghero (SS)Italy

Personalised recommendations